下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于CEEMD和GWO的超短期风速预测Title:Short-TermWindSpeedForecastingusingCEEMDandGWOAbstract:Inrecentyears,theaccurateforecastingofwindspeedhasbecomeincreasinglyimportantduetothegrowingdemandforrenewableenergysources.Windspeedforecastingplaysavitalroleintheefficientoperationandmanagementofwindpowergenerationsystems.Inthispaper,ahybridapproachcombiningtheCompleteEnsembleEmpiricalModeDecomposition(CEEMD)andGreyWolfOptimization(GWO)algorithmsisproposedtoforecastshort-termwindspeed.TheCEEMDtechniqueisusedtodecomposethewindspeedtimeseriesintoseveralintrinsicmodefunctions(IMFs)whichcapturethecomplextemporaldynamicsofwindspeed.Meanwhile,theGWOalgorithmisemployedtooptimizetheparametersoftheforecastingmodel,enhancingtheaccuracyofthewindspeedpredictions.Theproposedapproachisevaluatedusingrealwindspeeddata,andtheresultsdemonstrateitssuperiorityintermsofaccuracyandeffectivenesscomparedtotraditionalforecastingmethods.1.IntroductionTheintermittentandnon-stationarynatureofwindspeedposeschallengesforaccurateforecasting.Conventionalforecastingmethods,suchasstatisticalmodelsandartificialneuralnetworks,havelimitationsincapturingthecomplexdynamicsofwindspeed.Toovercometheselimitations,thispaperproposesahybridapproachthatcombinestwoadvancedtechniques:CEEMDandGWO.TheCEEMDtechniqueenablesthedecompositionofwindspeedtimeseriesintoIMFs,whichcapturedifferenttemporalscalesofthedata.TheGWOalgorithmoptimizestheparametersoftheforecastingmodeltoimprovepredictionaccuracy.2.Methodology2.1CompleteEnsembleEmpiricalModeDecomposition(CEEMD)CEEMDisanempiricalmodedecompositiontechniquethatovercomesthelimitationsoftraditionalFourierorwaveletdecompositions.ItdecomposesatimeseriesintomultipleIMFswithdifferenttemporalscales.Thedecompositioniscompletedthroughaniterativeprocessthatextractsthehigh-frequencycomponentsandtrendsfromtheoriginaldata.2.2GreyWolfOptimization(GWO)GWOisametaheuristicalgorithminspiredbythehuntingbehaviorofgreywolves.Itiscommonlyusedforoptimizationproblems.Inthisstudy,GWOisemployedtooptimizetheparametersoftheforecastingmodel,includingthenumberofdecompositionlevels,theIMFcomponentstobeselected,andthelagvaluesusedforforecasting.3.ExperimentalSetup3.1DataCollectionRealwindspeeddatafromawindfarmiscollectedforevaluationpurposes.Thedataincludeshistoricalwindspeedmeasurementstakenatregularintervals.3.2ModelImplementationThewindspeedtimeseriesisdecomposedintoIMFsusingCEEMD.Then,aforecastingmodelisconstructedusingtheselectedIMFsandtheoptimizedparametersthroughtheGWOalgorithm.Themodelistrainedusingaportionofthedataandevaluatedusingtheremainingportion.4.ResultsandAnalysisTheproposedhybridapproachiscomparedwithtraditionalstatisticalmodelsandartificialneuralnetworks.TheperformanceofthemodelsisevaluatedbasedonstatisticalmetricssuchasMeanAbsoluteError(MAE),RootMeanSquareError(RMSE),andMeanAbsolutePercentageError(MAPE).TheresultsdemonstratethattheCEEMD-GWOapproachoutperformstheothermethodsintermsofpredictionaccuracyandeffectiveness.5.ConclusionThispaperproposesanovelapproachforshort-termwindspeedforecastingbycombiningthestrengthsofCEEMDandGWO.TheCEEMDtechniqueeffectivelycapturesthecomplextemporaldynamicsofwindspeed,whiletheGWOalgorithmoptimizestheforecastingmodelparameters.Theexperimentalresultsconfirmthesuperiorityoftheproposedapproachovertraditionalforecastingmethods.Thefindingsofthisstudycanbevaluableforwindpowergenerationsystems,contributingtooptimaloperationandmanagement.Furtherresearchcanfocusonextendingthisapproachtomulti-step-aheadforecastingandincorporatingotherrelevantfactorssuchasweatherconditionsandterraincharacteristics.References:[Insertrelevantreferences]Note:Theprovidedcontentisageneraloutlineforapaperon
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 燃气供应系统升级改造合同(2024年版)3篇
- 2024年运输服务燃油车条款3篇
- 二零二四年度古建筑保护:废旧房屋拆除与古建保护合同3篇
- 2024年青海水利施工专项合同2篇
- 二零二四年度标的为00亿次广告展示的合同2篇
- 二零二四年度智能物流系统优化与升级合同
- 2024年城市绿化植物种植协议3篇
- 企业2024年度食堂供货合同3篇
- 商业广场物业委托管理协议(2024年)3篇
- 二零二四年度物流服务合同跨境电商物流解决方案
- 大学生防艾健康教育学习通超星期末考试答案章节答案2024年
- 2024年军队文职人员统一招聘考试英语真题
- 大学生生涯发展展示 (修改)
- 电气工程师生涯人物访谈报告
- PCM用户手册解析
- 北京市甲级设计院
- 盘式制动器设计计算
- 农业农村局工作人员绩效考核办法
- 门窗安装三级安全教育考试.doc
- 个人财产申报表.doc
- 【PPT】初中英语课件:情景交际
评论
0/150
提交评论