版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省岳阳市第五中学高考数学倒计时模拟卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q2.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.3.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,24.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势5.已知函数,若,则的值等于()A. B. C. D.6.的展开式中,含项的系数为()A. B. C. D.7.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.8.已知向量满足,且与的夹角为,则()A. B. C. D.9.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.10.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.6海里 B.6海里 C.8海里 D.8海里11.复数的虚部为()A.—1 B.—3 C.1 D.212.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若满足,且方向相同,则__________.14.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.15.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.16.根据如图所示的伪代码,输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M
),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1
(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.19.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.20.(12分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.21.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)22.(10分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。2、C【解析】
计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.3、C【解析】
先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.4、D【解析】
采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.5、B【解析】
由函数的奇偶性可得,【详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数6、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.7、B【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.8、A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.9、D【解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.10、A【解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.11、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.12、A【解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.【详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.14、2【解析】
根据为等边三角形建立的关系式,从而可求离心率.【详解】据题设分析知,,所以,得,所以双曲线的离心率.【点睛】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.15、,【解析】
根据是偶函数和的图象关于点对称,即可求出满足条件的和.【详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【点睛】本题主要考查了正弦型三角函数的性质,属于基础题.16、7【解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7【点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,,x[0,1];(2)P(,)时,视角∠EPF最大.【解析】
(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标.【详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1];(2)设P(,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P(,)时视角∠EPF最大,答:P(,)时,视角∠EPF最大.【点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.18、(1),(2)最大值,最小值【解析】
(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.【详解】(1)因为曲线的参数方程为所以两式平方相加得:因为直线的极坐标方程为.所以所以即(2)如图所示:圆心C到直线的距离为:所以圆上的点到直线的最小值为:则点M(2,0)到直线的距离为最大值:【点睛】本题主要考查参数方程,普通方程及极坐标方程的转化和直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.19、(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【解析】
(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.20、(1);(2)【解析】
(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度网络文化传播合同的担保规定
- 2024年度版权购买合同标的及版权范围
- 《abo血型鉴定》课件
- 2024年度常州二手住宅买卖交易安全合同
- 2024年度电商企业知识产权保护承包合同3篇
- 社区儿童保健与护理课件
- 2024年度知识产权许可合同标的及权利义务明确
- 2024中国移动浙江公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信河北唐山分公司校园招聘17人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国广电安徽网络股份限公司亳州分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024-2025学年浙江省杭州市西湖区保俶塔教育集团八年级(上)期中数学试卷(含答案)
- 2024-2030年中国超细海岛丝行业未来5发展趋势及投资策略分析报告
- 《两只小象》教学设计教学设计 教案
- 工厂火灾应急响应实施方案
- 智算中心发展创新指南
- 18.《富饶的西沙群岛》课件
- 青岛 数学 三年级 上册 第7单元《简单的时间计算》课件
- 牧场物语-矿石镇的伙伴们-完全攻略
- 2022-2023学年北京市海淀区七年级上学期期末语文试卷(含答案解析)
- 期中考试卷(试题)-2024-2025学年苏教版二年级数学上册
- 2024年全国企业员工全面质量管理知识竞赛题库(含答案)(共132题)
评论
0/150
提交评论