版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第五十六中学2024届高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足则的最大值为()A.2 B. C.1 D.02.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立5.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A. B.C. D.6.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.57.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数8.已知向量,,则向量与的夹角为()A. B. C. D.9.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.12010.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.11.设函数,则函数的图像可能为()A. B. C. D.12.执行如图所示的程序框图,则输出的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)14.若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是______.15.已知函数函数,其中,若函数恰有4个零点,则的取值范围是__________.16.已知复数(为虚数单位)为纯虚数,则实数的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值.18.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.19.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.20.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.21.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.2、B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.3、A【解析】
试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系4、C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.5、D【解析】
设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D.6、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.7、C【解析】
根据函数奇偶性的性质即可得到结论.【详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.8、C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.9、C【解析】
观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.10、B【解析】
根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.11、B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.12、B【解析】
列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、y=2x【解析】试题分析:当x>0时,-x<0,则f(-x)=ex-1+x.又因为f(x)为偶函数,所以f(x)=f(-x)=ex-1+x,所以f'【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当x>0时,函数y=f(x),则当x<0时,求函数的解析式”.有如下结论:若函数f(x)为偶函数,则当x<0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x).14、【解析】
先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,,即函数在上单调递增;当,时,,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为【点睛】本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.15、【解析】∵,∴,∵函数y=f(x)−g(x)恰好有四个零点,∴方程f(x)−g(x)=0有四个解,即f(x)+f(2−x)−b=0有四个解,即函数y=f(x)+f(2−x)与y=b的图象有四个交点,,作函数y=f(x)+f(2−x)与y=b的图象如下,,结合图象可知,<b<2,故答案为.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16、【解析】
利用复数的乘法求解再根据纯虚数的定义求解即可.【详解】解:复数为纯虚数,解得.故答案为:.【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(为参数);(2).【解析】
(1)根据伸缩变换结合曲线的参数方程可得出曲线的参数方程;(2)将曲线的方程化为普通方程,然后化为极坐标方程,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程,得出和关于的表达式,然后利用三角恒等变换思想即可求出面积的最大值.【详解】(1)由于曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,则曲线的参数方程为(为参数);(2)将曲线的参数方程化为普通方程得,化为极坐标方程得,即,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程得,,的面积为,当时,的面积取到最大值.【点睛】本题考查参数方程、极坐标方程与普通方程的互化,考查了伸缩变换,同时也考查了利用极坐标方程求解三角形面积的最值问题,要熟悉极坐标方程所适用的基本类型,考查分析问题和解决问题的能力,属于中等题.18、(1);(2).【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,,在梯形中,,则,,,,所以,;(2)取中点,连接、,过点作,则,作于,连接.为的中点,且,,且,所以,四边形为平行四边形,由于,,,,,,,为的中点,所以,,,同理,,,,平面,,,,为面与面所成的锐二面角,,,,,则,,,平面,平面,,,,面,为与底面所成的角,,,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.19、有的把握认为顾客购物体验的满意度与性别有关;.【解析】
由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关.获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有:,,,,,,,,,,,,,,,共个.其中仅有1人是女顾客的基本事件有:,,,,,,,,共个.所以获得纪念品的人中仅有人是女顾客的概率.【点睛】本小题主要考查统计案例、卡方分布、概率等基本知识,考查概率统计基本思想以及抽象概括等能力和应用意识,属于中档题.20、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度股权质押资产重组合同示范文本3篇
- 二零二五年度钢材仓储物流服务合同9篇
- 二零二五年度路灯照明设施安全检测合同样本2篇
- 二零二五年度:劳动合同法实务操作与案例分析合同3篇
- 二零二五年度船舶建造与设备安装合同2篇
- 二零二五年度农产品质量检测合同范本3篇
- 二零二五年度安置房买卖合同电子支付与结算规范3篇
- 3、2025年度绿色出行接送机服务合同范本2篇
- 二零二五年度文化创意产业合作开发合同范本3篇
- 家里陪护合同(2篇)
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
- 小区物业服务投标方案(技术标)
- 2024-2030年中国光电干扰一体设备行业发展现状与前景预测分析研究报告
- 2025届高考数学一轮复习建议-函数与导数专题讲座课件
- 心电图基本知识
- 中煤电力有限公司招聘笔试题库2024
- 消防接警员应知应会考试题库大全-上(单选、多选题)
- 2024风电场在役叶片维修全过程质量控制技术要求
- 湖南省岳阳市岳阳楼区2023-2024学年七年级下学期期末数学试题(解析版)
- 自适应噪声抵消技术的研究
- 山东省临沂市罗庄区2024届中考联考化学试题含解析
评论
0/150
提交评论