版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省第五届测评活动2024届高考数学四模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.2.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.3.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.4.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.5.函数的图象大致为()A. B.C. D.6.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种7.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.8.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.9.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.10.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为()A. B. C. D.11.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.12.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°14.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.15.设等比数列的前项和为,若,则数列的公比是.16.设,则“”是“”的__________条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.18.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.19.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.20.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.21.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.22.(10分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.2、A【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.3、B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.4、A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.5、A【解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.6、C【解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.7、B【解析】
根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.8、D【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.9、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.10、D【解析】
根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D.【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.11、D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养12、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.14、【解析】
试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.考点:几何体的体积的计算.15、.【解析】
当q=1时,.当时,,所以.16、充分必要【解析】
根据充分条件和必要条件的定义可判断两者之间的条件关系.【详解】当时,有,故“”是“”的充分条件.当时,有,故“”是“”的必要条件.故“”是“”的充分必要条件,故答案为:充分必要.【点睛】本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(1)由抛物线的性质,当轴时,最小;(2)设点,,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【详解】解:(1)由抛物线的标准方程,,根据抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,,其中,.则,①,②因为,,,所以.③由①②③,得,由,且,得,解不等式,得点纵坐标的范围为.【点睛】本题主要考查抛物线的方程和性质和二次方程的解的问题,考查运算能力,此类问题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等,易错点是复杂式子的变形能力不足,导致错解.18、(1)见解析;(2)【解析】
(1)记,连结,推导出,平面,由此能证明平面平面;(2)推导出,平面,连结,由题意得为的重心,,从而平面平面,进而是与平面所成角,由此能求出与平面所成角的正弦值.【详解】(1)证明:记,连结,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,连结,由题意得为的重心,,,,平面平面平面,∴在平面的射影落在上,是与平面所成角,中,,,,.与平面所成角的正弦值为.【点睛】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查线线、线面、面面的位置关系等基础知识,考查运算求解能力,是中档题.19、(1);(2)点在定直线上.【解析】
(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去).所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为.令,,即交轴于点坐标为,所以,,,.设点坐标为,则,所以点在定直线上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由题意可得,,,解得即可求出椭圆的C的方程;(Ⅱ)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,解得.由方程组消去y,解得,由,得到,转化为关于k的不等式,求得k的范围.【详解】(Ⅰ)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为3,所以,因为椭圆离心率为,所以,又,解得,,,所以椭圆的方程为;(Ⅱ)设直线的斜率为,则,设,由得,解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 猫腻作品《间客》经典语录
- 基本体操教案
- 光学分析仪器账务处理实例-记账实操
- 弱电施工技术交底
- 2024年药物控释材料项目综合评估报告
- 2019湘美版 高中美术 选择性必修5 工艺《第一单元 工艺概述》大单元整体教学设计2020课标
- 2024届河北省张家口市重点中学高三第二学期月考试卷(二)数学试题
- 2024届广东省珠海三中高三第二次五校联考数学试题
- 材料合同书样本简单
- 老人摔跤应急处置
- 初中物理实验室课程表
- 贵州省建筑业营改增建筑工程计价依据调整实施意见(试行)解读519
- 4.《多种多样的动物》教学设计
- GB∕T 15829-2021 软钎剂 分类与性能要求
- 南充市物业服务收费管理实施细则
- 浦东新区“十一五”学科带头人、骨干教师培养和发展方案
- 户外广告设施检验规范
- GB T 197-2018 普通螺纹 公差(高清版)
- 学前卫生学:集体儿童保健
- 【课件】第16课变革与突破——19世纪西方美术课件高中美术人教版(2019)美术鉴赏
- 《金属包装材料》PPT课件.ppt
评论
0/150
提交评论