版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市师院附中高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数=(a-x)|3a-x|,a是常数,且a>0,下列结论正确的是(
)A.当x=2a时,有最小值0
B.当x=3a时,有最大值0C.无最大值且无最小值
D.有最小值,但无最大值参考答案:C2.(5分)函数y=的值域是() A. (﹣∞,﹣)∪(﹣,+∞) B. (﹣∞,)∪(,+∞) C. (﹣∞,﹣)∪(﹣,+∞) D. (﹣∞,)∪(,+∞)参考答案:B考点: 函数的值域.专题: 函数的性质及应用.分析: 由函数y的解析式可得x=,显然,y≠,由此可得函数的值域.解答: 由函数y=可得x=,显然,y≠,结合所给的选项,故选B.点评: 本题主要考查求函数的值域,属于基础题.3.已知的终边经过点,且,则m等于(
)A.-3
B.3
C.
D.±3参考答案:B,解得.
4.要得到函数的图象,只需将函数的图象上所有点(
)A.向左平移个单位长度,再把横坐标缩短为原来的倍(纵坐标不变)B.向左平移个单位长度,再把横坐标缩短为原来的倍(纵坐标不变)C.向左平移个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)D.向左平移个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)参考答案:B5.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为()A. B. C. D.参考答案:C【考点】BB:众数、中位数、平均数;BA:茎叶图.【分析】由已知的茎叶图,我们可以求出甲乙两人的平均成绩,然后求出≤即甲的平均成绩不超过乙的平均成绩的概率,进而根据对立事件减法公式得到答案.【解答】解:由已知中的茎叶图可得甲的5次综合测评中的成绩分别为88,89,90,91,92,则甲的平均成绩==90设污损数字为X,则乙的5次综合测评中的成绩分别为83,83,87,99,90+X则乙的平均成绩==88.4+当X=8或9时,≤即甲的平均成绩不超过乙的平均成绩的概率为=则甲的平均成绩超过乙的平均成绩的概率P=1﹣=故选C6.圆C的方程为x2+y2-2x-2y-2=0,则该圆的半径,圆心坐标分别为A.2,(-2,1)
B.4,(1,1)
C.2,(1,,1)
D.,(1,2)参考答案:C略7.设=()A.6 B.5 C.4 D.3参考答案:A【考点】9R:平面向量数量积的运算.【分析】根据题意,由、的坐标计算可得向量+的坐标,进而由向量数量积的坐标计算公式计算可得答案.【解答】解:根据题意,=(1,﹣2),=(3,4),则+=(4,2),又由=(2,﹣1),则(+)?=4×2+2×(﹣1)=6;故选:A.8.下列函数中,满足“对任意,,当时,都有”的是(
)A. B. C. D.参考答案:B9.已知直线与圆:相交于点,则弦的长为(
)A.
B.
C.
D.参考答案:C10.已知全集U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则集合等于()A.{5}
B.{0,3}
C.{0,2,5}
D.{0,1,3,4,5}参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=3ax-2a+1在区间(-1,1)上存在一个零点,求a的取值范围 参考答案:或12.已知,则的最小值是
.参考答案:略13.下列各式中正确的有
.(把你认为正确的序号全部写上)(1);(2)已知则;(3)函数的图象与函数的图象关于原点对称;(4)函数是偶函数;(5)函数的递增区间为.参考答案:(3)14.定义在上的函数,若关于的方程有5个不同的实根,则=___________参考答案:15.已知函数f(x)=x2﹣2(a﹣1)x+2在区间(﹣∞,6]上为减函数,则实数a的取值范围为.参考答案:[7,+∞)【考点】二次函数的性质.【专题】函数思想;函数的性质及应用;不等式的解法及应用.【分析】由函数f(x)=x2﹣2(a﹣1)x+2的解析式,根据二次函数的性质,判断出其图象是开口方向朝上,以x=a﹣1为对称轴的抛物线,此时在对称轴左侧的区间为函数的递减区间,由此可构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:函数f(x)=x2﹣2(a﹣1)x+2的图象是开口方向朝上,以x=a﹣1为对称轴的抛物线,若函数f(x)=x2﹣2(a﹣1)x+2在区间(﹣∞,6]上是减函数,则a﹣1≥6,解得a≥7.故答案为:[7,+∞).【点评】本题考查的知识点是函数单调性的性质,及二次函数的性质,其中根据已知中函数的解析式,分析出函数的图象形状,进而分析函数的单调性,是解答此类问题最常用的办法.16.己知矩阵,若矩阵C满足,则矩阵C的所有特征值之和为____.参考答案:5【分析】本题根据矩阵乘法运算解出矩阵C,再依据特征多项式求出特征值,即可得到所有特征值之和.【详解】解:由题意,可设C=,则有?=.即,解得.∴C=.∵f(λ)==(λ﹣1)(λ﹣4)+2=λ2﹣5λ+6=(λ﹣2)(λ﹣3)=0,∴特征值λ1=2,λ2=3.∴λ1+λ2=2+3=5.故答案为:5.【点睛】本题主要考查矩阵乘法运算及依据特征多项式求出特征值,本题不难,但有一定综合性.本题属基础题.17.不等式的解集为
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,四棱锥S-ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,SB=.
(1)求四棱锥S-ABCD的体积;(2)设棱SA的中点为M,求异面直线DM与SC所成角的余弦值.参考答案:(1);(2).【分析】(1)连结,易知BD为棱锥的高,结合棱锥的特征计算可得四棱锥的体积.(2)解法一:取中点,连结、,由几何体的特征可知为异面直线与所成的角,计算可得,即异面直线与所成的角的大小为.解法二:如图以为原点,建立空间直角坐标系,结合点的坐标可得,∵,,则,异面直线与所成的角的大小为.【详解】(1)连结,平面,平面,∴,为边长为1的菱形,且,∴,,∴,,∴,∴.(2)解法一:取中点,连结、,∴且,∴为异面直线与所成的角,又∵在中,,∴,同时,,∴为等边三角形,∴,即异面直线与所成的角的大小为.解法二:如图以为原点,建立空间直角坐标系,其中,设与交于点,则,∴,又,∴,即,∵,∴,∴,即异面直线与所成的角的大小为.【点睛】本题主要考查棱锥的体积公式,异面直线所成的角的计算,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19.(本小题满分8分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.(Ⅰ)求该圆台的母线长;(Ⅱ)求该圆台的体积.参考答案:(Ⅰ)设圆台的母线长为,则圆台的上底面面积为,
圆台的下底面面积为,
所以圆台的底面面积为
又圆台的侧面积,于是,即为所求.·················4分(Ⅱ)由(Ⅰ)可求得,圆台的高为.∴
=
=.·······························5分略20.已知函数
(1)设,求的取值范围;
(2)求的最值,并给出函数取得最值时相应的的值。参考答案:解:(1)∵∴当即时,取得最大值,且
当即时,取得最小值,且
略21.(本题满分14分)已知函数(1)求的最大值和最小值;
(2)求证:对任意,总有;(3)若函数在区间上有零点,求实数C的取值范围.参考答案:解:(1)图象的对称轴为………..1分在上是减函数,在上是增函数…………………2分………4分……………….6分(2)对任意,总有,即…………………….9分(3)因为函数的图象是开口向上的抛物线,对称轴为,函数在上有零点时,则
即………………..12分解得………….13分所以所求实数的取值范围是……………..14分略22.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.(Ⅰ)证明:NE⊥PD;(Ⅱ)求三棱锥E﹣PBC的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(Ⅰ)连结AC与BD交于点F,则F为BD的中点,连结NF,由三角形中位线定理可得NF∥PD,,在结合已知得四边形NFCE为平行四边形,得到NE∥AC.再由PD⊥平面ABCD,得AC⊥PD,从而证得NE⊥PD;(Ⅱ)由PD⊥平面ABCD,得平面PDCE⊥平面ABCD,可得BC⊥CD,则BC⊥平面PDCE.然后利用等积法把三棱锥E﹣PBC的体积转化为B﹣PEC的体积求解.【解答】(Ⅰ)证明:连结AC与BD交于点F,则F为BD的中点,连结NF,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农村地房产改建流转改建租赁合同
- 2025年教育机构艺术体操俱乐部劳动合同范本3篇
- 宜宾酒王2025年度控量保价销售风险评估合同3篇
- 2025年医疗监督机构合作协议
- 2025年度煤矿基建工程安全施工事故预防合同3篇
- 二零二五年杭州环保科技企业股权合资与污染治理合同3篇
- 工业安全意识提升课程设计的重要意义
- 2025年度煤炭资源勘探与开采许可合同4篇
- 2025版铝合金门窗行业知识产权保护合同4篇
- 二零二五年度园林景观绿化工程分包合同示范文本4篇
- 风筝产业深度调研及未来发展现状趋势
- 吉利汽车集团总部机构设置、岗位编制
- 矿山安全生产法律法规
- 小学数学《比的认识单元复习课》教学设计(课例)
- 词性转换清单-2024届高考英语外研版(2019)必修第一二三册
- GB/T 44670-2024殡仪馆职工安全防护通用要求
- 安徽省合肥市2023-2024学年七年级上学期期末数学试题(含答案)
- 合同债务人变更协议书模板
- 2024年高中生物新教材同步选择性必修第三册学习笔记第4章 本章知识网络
- 西班牙可再生能源行业市场前景及投资研究报告-培训课件外文版2024.6光伏储能风电
- 2024-2029年中国制浆系统行业市场现状分析及竞争格局与投资发展研究报告
评论
0/150
提交评论