版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省阜阳市止戈实验中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆的两焦点之间的距离为(
)A.
B.
C.
D.参考答案:C2.已知是递增数列,且对任意都有恒成立,则实数的取值范围
(
)A、(
B、(
C、(
D、(参考答案:D3.等比数列中,则的前项和为(
)
A.
B.
C.
D.参考答案:B
4.△ABC中,,,,则△ABC的面积等于(
)A. B. C.或 D.或参考答案:D【分析】先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此△ABC的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.5.函数的定义域为D,若对于任意时都有,则称函数在D上为非减函数,设在上为非减函数,且满足以下条件:(1);(2);(3),则(
)
A.
B.
C.1
D.参考答案:略6.已知,点,,都在二次函数的图像上,则(
). A. B. C. D.参考答案:D解:∵,∴,即三点都在二次函数对称轴的左侧,又二次函数在对称轴的左侧是单调减函数,∴.故选.7.设集合,函数,若,且,则的取值范围是(
)(A)
(B)
(C)
(D)参考答案:D8.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位)。这个问题中,甲所得为(
)A.钱
B.钱
C.钱
D.钱参考答案:B设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.
9.已知正数.,则的最小值为(
)A.6
B.5
C.
D.参考答案:C略10.数列满足则等于 (
) A.
B.-1
C.2
D.3参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=,若f(f(a))=2,则实数a的值为.参考答案:﹣,,16【考点】分段函数的应用.【分析】f(f(a))=2,由此利用分类讨论思想能求出a.【解答】解:由f(x)=,f(f(a))=2,当log2a≤0时,即0<a≤1时,(log2a)2+1=2,即(log2a)2=1,解得a=,当log2a>0时,即a>1时,log2(log2a)=2,解得a=16,因为a2+1>0,log2(a2+1)=2,即a2+1=4解得a=(舍去),或﹣,综上所述a的值为﹣,,16,故答案为:﹣,,16,【点评】本题考查函数值的求法及应用,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.12.根据下表,用二分法求函数在区间上的零点的近似值(精确度)是_____________.参考答案:或或区间上的任何一个值;略13.幂函数的图像经过点,则的解析式是
.参考答案:
14.已知集合A={x|﹣2≤x≤3},B={x|x≥m},若A?B,则实数m的取值范围为.参考答案:(﹣∞,﹣2]【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】由集合A={x|﹣2≤x≤3},B={x|x≥m},且A?B,可得m≤﹣2,用区间表示可得m的取值范围.【解答】解:∵集合A={x|﹣2≤x≤3},B={x|x≥m},且A?B,∴m≤﹣2,∴实数m的取值范围是:(﹣∞,﹣2],故答案为:(﹣∞,﹣2].【点评】本题考查的知识点是集合的包含关系判断及应用,其中根据子集的定义,得到m≤﹣2是解答的关键.15.(3分)若函数f(x)=()x+m的图象不经过第一象限,则实数m的取值范围是
.参考答案:(﹣∞,﹣1]考点: 指数函数的图像变换.专题: 函数的性质及应用.分析: 根据指数函数的图象和性质即可得到结论.解答: ∵函数f(x)为减函数,∴若函数f(x)=()x+m的图象不经过第一象限,则满足f(0)=1+m≤0,即m≤﹣1;故答案为:(﹣∞,﹣1]点评: 本题主要考查指数函数的图象和性质,比较基础.16.在空间直角坐标系中,点关于平面的对称点的坐标是
参考答案:
略17.执行如图所示的程穿框图,若输入x=3,则输出的结果为_________参考答案:243三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于t的不等式恒成立,求实数t的取值范围.参考答案:解:(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.
19.(14分)求斜率为,且与坐标轴所围成的三角形的面积是6的直线方程.参考答案:考点: 直线的截距式方程.专题: 直线与圆.分析: 设所求直线的方程为y=x+b,由此求出纵截距y=b,横截距x=﹣b,由已知得||=6,由此能求出直线方程.解答: 设所求直线的方程为y=x+b,令x=0,得y=b,令y=0,得x=﹣b,由已知,得||=6,即b2=6,解得b=±3.故所求的直线方程是y=x±3,即3x﹣4y±12=0.点评: 本题考查直线方程的求法,是基础题,解题时要认真审题.20.(12分)已知tanα,tanβ是一元二次方程3x2+5x﹣2=0的两根,且α∈(0,),β∈(,π),(1)求cos(α﹣β)的值;(2)求α+β的值.参考答案:考点: 两角和与差的正切函数;同角三角函数基本关系的运用.专题: 三角函数的求值.分析: (1)通过方程的根,求出α、β的正切函数值,利用两角和的正切函数,求出正切函数值,通过角的范围,求cos(α﹣β)的值;(2)利用(1)的结果求出α+β的正切函数值,通过角的范围求解角的大小即可.解答: (1)一元二次方程3x2+5x﹣2=0的两根为﹣2和,α∈(0,),β∈(,π),∴tanβ=﹣2,tanα=﹣﹣(2分)∴tan(α﹣β)=,α﹣β∈∴cos(α﹣β)=﹣=﹣=﹣﹣﹣﹣﹣﹣﹣(6分)(2)∵tanβ=﹣2,tanα=,∴tan(α+β)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵α∈(0,),β∈(,π),∴α+β∈﹣﹣﹣﹣﹣﹣(10分),∴α+β=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评: 不考查两角和的正切函数的应用,三角函数的化简求值,注意角的范围的求法,考查分析问题解决问题的能力.21.已知点(1,)是函数且)的图象上一点,等比数列的前项和为,正项数列的首项为,且的前项和满足:-=+().(Ⅰ)求数列的通项公式;(Ⅱ)求数列的通项公式;(Ⅲ)若数列{前项和为,求使恒成立的最小正整数。参考答案:解:(Ⅰ),
,,
.又数列成等比数列,
,所以;又公比,所以
;(Ⅱ)
又,,;数列构成一个首相为1公差为1的等差数列,
,当,
;();(Ⅲ)
;
由得,满足的最小正整数为112.略22.已知是第三象限角,且.(1)若,求的值;(2)求函数,的值域.参考答案:(1)(2)【分析】(1)利用诱导公式化简和,再利用同角三角函数的基本关系即可得到的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租大院合同范例
- 清理道路塌方合同范例
- 小区吊篮出租合同范例
- 千山医院食堂承包合同范例
- 2025广东省劳动合同范本2
- 兔子回收合同范例
- 品牌产品销售合作合同范例
- 铜陵学院《材料加工工艺和设备》2023-2024学年第一学期期末试卷
- 铜川职业技术学院《视觉图像处理平台》2023-2024学年第一学期期末试卷
- 铜川职业技术学院《科学计算语言实验》2023-2024学年第一学期期末试卷
- 电影作品解读-世界科幻电影智慧树知到期末考试答案章节答案2024年成都锦城学院
- NB-T47003.1-2009钢制焊接常压容器(同JB-T4735.1-2009)
- 聚焦高质量+探索新高度+-2025届高考政治复习备考策略
- 惠州市惠城区2022-2023学年七年级上学期期末教学质量检测数学试卷
- 北京市西城区2022-2023学年七年级上学期期末英语试题【带答案】
- ISO45001-2018职业健康安全管理体系之5-4:“5 领导作用和工作人员参与-5.4 工作人员的协商和参与”解读和应用指导材料(2024A0-雷泽佳)
- 看图猜成语共876道题目动画版
- 小学二年级上册数学-数角的个数专项练习
- 曲式与作品分析智慧树知到期末考试答案章节答案2024年兰州文理学院
- 园林设施维护方案
- 特种设备使用单位日管控、周排查、月调度示范表
评论
0/150
提交评论