版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1江苏省扬州市仪征市2022-2023学年高一下学期期中数学试题一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知复数,其中a,,i是虚数单位,则()A.-5 B.-1 C.1 D.5〖答案〗B〖解析〗由,得,∴,即,,∴.故选:B.2.在中,若,,,则=()A B. C. D.〖答案〗B〖解析〗在中,若,,,由正弦定理得:,所以.故选:B.3.若函数的零点所在的区间为,则整数的值为()A. B. C. D.〖答案〗C〖解析〗由为增函数,且,可得零点所在的区间为,所以.故选:C.4.的值为()A. B. C. D.〖答案〗C〖解析〗.故选:C.5.已知正方形的边长为()A.3 B. C.6 D.〖答案〗A〖解析〗因为正方形的边长为3,,则.故选:.6.已知,且α为锐角,则cosα=()A B. C. D.〖答案〗C〖解析〗因为,且α为锐角,则﹣<<,即cos()==,则cosα=cos[()+]=cos()cos﹣sin()sin=(﹣)=.故选:C.7.平面内三个单位向量,,满足,则()A.,方向相同 B.,方向相同C.,方向相同 D.,,两两互不共线〖答案〗A〖解析〗因为,所以,所以,所以,所以,所以,所以,所以,所以,方向相同.故选:A.8.中若有,则的形状一定是()A.等腰三角形 B.直角三角形C.锐角三角形 D.等腰直角三角形〖答案〗B〖解析〗由,得,所以,所以,所以,所以,因为,所以,所以,因为,所以,所以为直角三角形.故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数(为虚数单位),则()A. B.z对应的点在第一象限C.z的虚部为 D.z的共轭复数为〖答案〗AB〖解析〗由题意,因为z=1+,所以|z|==,其对应的为在第一象限,且其虚部为1,其共轭复数为1-,所以选项A,B正确,选项C,D错误.故选:AB.10.如图,每一个小方格边长为1个单位,在的方格纸中有一个向量(以图中的格点为起点,格点为终点),则()A.分别以图中的格点为起点和终点的向量中,与是相反向量的共有11个B.满足的格点共有3个C.存在格点满足D.存在格点,使得〖答案〗BCD〖解析〗以为坐标原点,建立平面直角坐标系,如下图所示:对于A选项,利用向量平移以及相反向量的概念可知,将向量分别向左、右、下各方向平移的过程中,起点和终点都在图中的格点处的向量都与向量相等,取相反方向即可得出与是相反向量的共有18个,即A错误;对于B选项,可设,且,易知,则,所以,解得,共3个,即格点共有3个,所以B正确;对于C选项,若,即满足,可得共4个,即存在格点满足,故C正确;对于D选项,易知当时,满足,所以D正确.故选:BCD.11.下列四个等式其中正确的是()A. B.C. D.〖答案〗AD〖解析〗A选项,,,,所以正确;B选项,,,所以错误;C选项,,所以错误;D选项,,所以正确.故选:AD.12.已知满足,且的面积,则下列命题正确的是()A.周长为B三个内角满足关系C.外接圆半径为D.中线的长为〖答案〗ABD〖解析〗因为满足,由正弦定理得,可设,其中,又由余弦定理得,因为,可得,所以,所以,所以B正确;又因为的面积,可得,解得,所以,所以的周长为,所以A正确;设的外接圆的半径为,可得,即,所以C错误;在中,可得,所以,所以,即中线的长为,所以D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.若是关于x的实系数方程的一个根,则_______.〖答案〗3〖解析〗1-i是关于x的实系数方程x2+bx+c=0的一个根,可知1+i是关于x的实系数方程x2+bx+c=0的一个根,∴(1+i)(1﹣i)=c,∴c=3.故〖答案〗为:3.14.设向量,且,则=________.〖答案〗〖解析〗根据两向量垂直,可得,解得.故〖答案〗为:.15.已知,且,求的值为_____.〖答案〗〖解析〗,则,注意到,于是,不妨记,于是,而,于是(负值舍去),又,则(正值舍去),于是计算可得:,而,于是.故〖答案〗为:.16.斯特瓦尔特(Stewart)定理是由世纪的英国数学家提出的关于三角形中线段之间关系的结论.根据斯特瓦尔特定理可得出如下结论:设中,内角、、的对边分别为、、,点在边上,且,则.已知中,内角、、的对边分别为、、,,,点在上,且的面积与的面积之比为,则______.〖答案〗〖解析〗由及正弦定理可得,,则,所以,,则,,故,,,由余弦定理可得,,则,故,由斯特瓦尔特定理可得,因此,.故〖答案〗为:.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知平面向量,满足,,,的夹角为.(1)求;(2)求.解:(1)因为,,,的夹角为,根据数量积的定义,.(2).18.已知复数(其中,,为虚数单位).在①;②z为纯虚数;③z的实部与虚部相等.这三个条件中任选一个,补充在下面问题中,并解答问题.(1)若______,求实数m的值;(2)若复数的模为5,求实数m的值.解:(1)若选①,因为,则,解得;若选②,因为z为纯虚数,则,解得;若选③,因为z的实部与虚部相等,则,解得.(2)因为,所以,解得或19.已知.(1)求的值;(2)求的值.解:(1)由题意,所以.(2)由(1)得,,所以.20.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.解:(1)∵向量,由,可得:,即,∵x∈[0,π],∴.(2)由,∵x∈[0,π],∴,∴当时,即x=0时f(x)max=3;当,即时.21.为响应国家“乡村振兴”号召,农民王大伯拟将自家一块直角三角形地按如图规划成3个功能区:△BNC区域为荔枝林和放养走地鸡,△CMA区域规划为“民宿”供游客住宿及餐饮,△MNC区域规划为小型鱼塘养鱼供休闲垂钓.为安全起见,在鱼塘△MNC周围筑起护栏.已知,,,.(1)若时,求护栏的长度(△MNC的周长);(2)当为何值时,鱼塘△MNC的面积最小,最小面积是多少?解:(1)由,,,则,所以,,则,在△ACM中,由余弦定理得,则,所以,即,又,所以,则,综上,护栏的长度(△MNC的周长)为.(2)设,在△BCN中,由,得,在△ACM中,由,得,所以,而,所以,仅当,即时,有最大值为,此时△CMN的面积取最小值为.22.法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这个三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在中,内角,,的对边分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《6 人间彩虹-桥》(说课稿)-2023-2024学年四年级下册综合实践活动吉美版
- 自行车里的数学(说课稿)-2023-2024学年数学六年级下册人教版
- 7 不甘屈辱 奋勇抗争(说课稿)2023-2024学年统编版道德与法治五年级下册
- 公开课说课稿-光合作用的原理和应用说课稿
- 第6单元 单元分析2024-2025学年四年级语文上册说课稿(统编版)
- 二零二五年度文化创意产业园区入驻管理协议3篇
- 2025年房产贷款合同5篇
- 2025年沪教版二年级语文下册月考试卷含答案
- 2025年北师大新版八年级语文下册阶段测试试卷含答案
- 粤教版高中信息技术选修2说课稿-5.2.1 动画的分类-
- 2025年山东水发集团限公司社会招聘高频重点提升(共500题)附带答案详解
- JJG 1204-2025电子计价秤检定规程(试行)
- 2024年计算机二级WPS考试题库(共380题含答案)
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 中建集团面试自我介绍
- 《工业园区节水管理规范》
- 警校生职业生涯规划
- 意识障碍患者的护理诊断及措施
- 2025企业年会盛典
- 215kWh工商业液冷储能电池一体柜用户手册
- 场地平整施工组织设计-(3)模板
评论
0/150
提交评论