版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市蓟县2023-2024学年高考数学必刷试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.2.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.363.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米4.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.6.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.8.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.9.若集合,,则=()A. B. C. D.10.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.18012.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.14.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.15.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.16.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.18.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.19.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.20.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.21.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22.(10分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.2、B【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.3、D【解析】
根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.4、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.5、C【解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.6、C【解析】
由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,,对应点为,在第三象限.故选:C.【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.7、D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养8、D【解析】
这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.9、C【解析】试题分析:化简集合故选C.考点:集合的运算.10、A【解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.11、A【解析】
因为,可得,根据等差数列前项和,即可求得答案.【详解】,,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.12、D【解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.14、【解析】
由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。【详解】由题意可得,直线的方程为,联立方程组,可得,设,则,,设,则,,又,所以圆是以为圆心,4为半径的圆,所以点恒在圆外.圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,要满足题意,则,所以,整理得,解得,故实数的取值范围为【点睛】本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。15、0【解析】
利用等差中项以及等比数列的前项和公式即可求解.【详解】由,,是等差数列可知因为,所以,故答案为:0【点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.16、【解析】
先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,,设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(1)取中点,连,,由等边三角形三边合一可知,,即证.(2)以,,为正方向建立空间直角坐标系,由向量法可求得平面与平面所成的锐二面角的余弦值.试题解析:(Ⅰ)证明:连,,则和皆为正三角形.取中点,连,,则,,则平面,则(Ⅱ)由(Ⅰ)知,,又,所以.如图所示,分别以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取面的法向量取,则,平面与平面所成的锐二面角的余弦值.18、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先画出图形,结合垂直平分线和平行四边形性质可得为一定值,,故可确定点轨迹为椭圆(),进而求解;(Ⅱ)设直线方程为,点坐标分别为,联立直线与椭圆方程得,,分别由点斜式求得直线KA的方程为,令得,同理得,由结合韦达定理即可求解,而,当重合交于点时,可求最值;【详解】(Ⅰ),所以点的轨迹是一个椭圆,且长轴长,半焦距,所以,轨迹的方程为.(Ⅱ)当直线的斜率为0时,与曲线无交点.当直线的斜率不为0时,设过点的直线方程为,点坐标分别为.直线与椭圆方程联立得消去,得.则,.直线KA的方程为.令得.同理可得.所以.所以的中点为.不妨设点在点的上方,则.【点睛】本题考查根据椭圆的定义求椭圆的方程,椭圆中的定点定值问题,属于中档题19、(1);(2).【解析】试题分析:(1)由正弦定理得到.消去公因式得到所以.进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到.解析:(I)因为,所以,由正弦定理,得.又因为,,所以.又因为,所以.(II)由,得,由余弦定理,得,即,因为,解得.因为,所以.20、(1);(2)【解析】
(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.21、(1)(2)证明见解析【解析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【详解】(1)解:因为函数的图象恒在的图象的下方,所以在区间上恒成立.设,其中,所以,其中,.①当,即时,,所以函数在上单调递增,,故成立,满足题意.②当,即时,设,则图象的对称轴,,,所以在上存在唯一实根,设为,则,,,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,,,所以.令,则,所以在上单调递增,,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.【点睛】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普陀标准厂房出租合同范本
- 二零二四年度充电桩智能化升级改造合同
- 广告推广合同范本
- 2024年度光伏设备采购合同及安装服务协议
- 二零二四年度科研合作协议:实验室共建与科研项目协作
- 整体基础合同范本
- 2024年度劳动合同纠纷解决协议
- 2024年度烟囱拆除工程设计协议
- 二零二四年度北京市新能源汽车租赁服务协议
- 食品赊销合同范本
- 《篮球原地双手胸前传接球》
- 弯垫板级进模的设计本科毕业论文
- 汽车维修设备设施汇总表
- 2022年中国铁路成都局集团有限公司招聘毕业生考试真题及答案
- 输电线路杆塔集成监测雷击闪络倾斜振动温湿度故障定位及系统
- 道路运输危险货物安全卡完整
- 中国药师职业技能大赛处方审核案例题及答案
- 校园保安培训课件
- 安全管理的几点做法1000字
- 新公共服务视角下的政府职能转变问题研究共3篇
- 全部财产给独生子女遗嘱范文(优选3篇)
评论
0/150
提交评论