![2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷含解析_第1页](http://file4.renrendoc.com/view2/M02/1D/01/wKhkFmZEHCaABn56AAJ5Aat7oAA375.jpg)
![2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷含解析_第2页](http://file4.renrendoc.com/view2/M02/1D/01/wKhkFmZEHCaABn56AAJ5Aat7oAA3752.jpg)
![2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷含解析_第3页](http://file4.renrendoc.com/view2/M02/1D/01/wKhkFmZEHCaABn56AAJ5Aat7oAA3753.jpg)
![2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷含解析_第4页](http://file4.renrendoc.com/view2/M02/1D/01/wKhkFmZEHCaABn56AAJ5Aat7oAA3754.jpg)
![2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷含解析_第5页](http://file4.renrendoc.com/view2/M02/1D/01/wKhkFmZEHCaABn56AAJ5Aat7oAA3755.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年北京市第十二中学高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则,不可能满足的关系是()A. B. C. D.2.已知函数,则不等式的解集是()A. B. C. D.3.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.与去年同期相比,2017年第一季度的GDP总量实现了增长.C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D.去年同期河南省的GDP总量不超过4000亿元.4.设,,,则()A. B. C. D.5.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A. B. C. D.6.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.7.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.258.设a,b,c为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不修要条件9.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.10.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.109511.设,,,则、、的大小关系为()A. B. C. D.12.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足约束条件,则的最小值为______.14.已知为椭圆上的一个动点,,,设直线和分别与直线交于,两点,若与的面积相等,则线段的长为______.15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.16.三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.18.(12分)已知,,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.19.(12分)已知函数f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范围;(Ⅱ)若a<0,对∀x,y∈-∞,a,都有不等式f(x)≤(y+2020)+20.(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.21.(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.22.(10分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、、、这四个点中的任一位置.记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为.(1)分别求、、的值;(2)求的表达式.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题2、B【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.3、C【解析】
利用图表中的数据进行分析即可求解.【详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.4、A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.5、C【解析】
设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线.正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.6、C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.7、D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.8、B【解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.9、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.10、D【解析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.11、D【解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.12、B【解析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.14、【解析】
先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而可求得点的横坐标,代入椭圆方程得纵坐标,然后可得.【详解】如图,设,,,由,得,由得,∴,解得,又在椭圆上,∴,,∴.故答案为:.【点睛】本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示.15、【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。【详解】八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。故答案为:。【点睛】本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。16、【解析】
某层抽取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)见解析(II)【解析】
(1)由题x>0,,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,,利用导数性质能证明.(2)由得,令,利用反证法可证明证明恒成立.由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围..【详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,,下面先证明恒成立.若存在,使得,,,且当自变量充分大时,,所以存在,,使得,,取,则与至少有两个交点,矛盾.由对任意,只有一个解,得为上的递增函数,得,令,则,得【点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.18、(1)的最小正周期为:;函数单调递增区间为:;(2).【解析】
(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小正周期公式和单调性进行求解即可;(2)由(1)结合,求出的大小,再根据三角形面积公式,结合余弦定理和基本不等式进行求解即可.【详解】(1)的最小正周期为:;当时,即当时,函数单调递增,所以函数单调递增区间为:;(2)因为,所以设边上的高为,所以有,由余弦定理可知:(当用仅当时,取等号),所以,因此边上的高的最大值.【点睛】本题考查了正弦的二倍角公式、诱导公式、辅助角公式,考查了余弦定理、三角形面积公式,考查了基本不等式的应用,考查了数学运算能力.19、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由题意不等式化为|1-2a|-|1-a|>1,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为[f(x)]max≤[|y+2020|+|y-a|]min,分别求出【详解】(Ⅰ)由题意知,f(1)=|1-2a|-|1-a|>1,若a≤12,则不等式化为1-2a-1+a>1,解得若12<a<1,则不等式化为2a-1-(1-a)>1,解得若a≥1,则不等式化为2a-1+1-a>1,解得a>1,综上所述,a的取值范围是(-∞,-1)∪(1,+∞);(Ⅱ)由题意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max当x∈(-∞,a]时,|x-2a|-|x-a|≤-a,[f(x)]max因为|y+2020|+|y-a|≥|a+2020|,所以当(y+2020)(y-a)≤0时,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,结合a<0,所以a的取值范围是[-1010,0).【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题.含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.20、(1)1;(2)证明见解析.【解析】
(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,,,三式相加,即可得证.【详解】(1)解:不等式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 留队申请书义务兵消防
- 入团申请书800字以上
- 初级银行管理-银行专业初级《银行管理》模拟试卷7
- 台湾个人游申请书
- 羽毛球协会申请书
- DB2111-T 0034-2024 日光温室碱地柿子套种玉米技术规程
- 管道设备采购分包合同(2篇)
- 山东省临沂市2024-2025学年高二上学期期中考试物理试卷(解析版)
- 一建《建设工程项目管理》试题库资料练习含【答案】卷12
- 外研版高中英语选择性必修第四册UNIT6 Period6课件
- 化工仪表自动化【第四章】自动控制仪表
- 数据结构教学课件:chapter8
- 玉米杂交种制种技术汇总
- 线性空间的定义与性质
- 安全生产十大法则及安全管理十大定律
- 化妆品批生产记录
- Excel数据透视表培训PPT课件
- 数学八年级上浙教版3.2直棱柱的表面展开图同步练习
- 化工车间布置原则
- 【公开课课件】高三英语二轮复习polish writing
- 货运中心装卸业务外包(委外)询价采购招投标书范本
评论
0/150
提交评论