四川成都青羊区外国语学校2024年高考冲刺模拟数学试题含解析_第1页
四川成都青羊区外国语学校2024年高考冲刺模拟数学试题含解析_第2页
四川成都青羊区外国语学校2024年高考冲刺模拟数学试题含解析_第3页
四川成都青羊区外国语学校2024年高考冲刺模拟数学试题含解析_第4页
四川成都青羊区外国语学校2024年高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川成都青羊区外国语学校2024年高考冲刺模拟数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,则()A. B.C. D.2.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg4.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为()A. B. C. D.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙6.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.7.函数在上单调递减的充要条件是()A. B. C. D.8.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.9.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.10.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.11.已知平面向量,满足,,且,则()A.3 B. C. D.512.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知是函数的极大值点,则的取值范围是____________.14.数据的标准差为_____.15.函数在区间(-∞,1)上递增,则实数a的取值范围是____16.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.18.(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.(1)证明:;(2)若的面积,求的取值范围.19.(12分)已知正实数满足.(1)求的最小值.(2)证明:20.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?21.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.22.(10分)已知,,且.(1)求的最小值;(2)证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.2、C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.3、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.4、D【解析】

由试验结果知对0~1之间的均匀随机数,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值.【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:.【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题.线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.5、A【解析】

利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6、A【解析】

根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.7、C【解析】

先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.8、C【解析】

根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9、B【解析】

利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.10、B【解析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.11、B【解析】

先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.12、C【解析】

根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,.方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得.14、【解析】

先计算平均数再求解方差与标准差即可.【详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【点睛】本题主要考查了标准差的计算,属于基础题.15、【解析】

根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.16、【解析】

根据题意,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上,列出方程解得即可得到结论.【详解】由,,设的中点为,根据题意,可得,且,解得,,,故.故答案为:.【点睛】本题考查相交弦的性质,解题的关键在于利用相交弦的性质,即两圆的连心线垂直平分相交弦,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长.【详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力.18、(1)见解析;(2).【解析】

(1)设点、,求出直线、的方程,与抛物线的方程联立,求出点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,,,代入直线的方程,得,解得,同理,可得,,,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,,,,,,同理,得,,由,整理得,由韦达定理得,,,得,设点到直线的高为,则,,,,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题.19、(1);(2)见解析【解析】

(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为,所以因为,所以(当且仅当,即时等号成立),所以(2)证明:因为,所以故(当且仅当时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.20、(1)降低(2)【解析】

(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论