专题06 一次函数的应用(讲)-备战2019年中考数学二轮复习讲练测(解析版)_第1页
专题06 一次函数的应用(讲)-备战2019年中考数学二轮复习讲练测(解析版)_第2页
专题06 一次函数的应用(讲)-备战2019年中考数学二轮复习讲练测(解析版)_第3页
专题06 一次函数的应用(讲)-备战2019年中考数学二轮复习讲练测(解析版)_第4页
专题06 一次函数的应用(讲)-备战2019年中考数学二轮复习讲练测(解析版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

备战2019年中考二轮讲练测(精选重点典型题)专题06一次函数的应用一讲考点——考点梳理解决一次函数的实际问题的一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2、.一次函数实际问题的常见题型(1)一次函数的图象的实际问题分析(2)一次函数的表格类问题(3)一次函数的分段函数类应用题(4)一次函数的最优化及方案设计型问题二讲题型——题型解析(一)一次函数图象的实际问题分析例1甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【答案】(1)80;1140;(2)y=60x﹣120(4≤x≤9);(3)8.【分析】(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.【解析】(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.考点:一次函数的应用;分段函数.(二)一次函数的方案设计问题例2在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【答案】(1)y==100x+17360(21≤x≤62,且x为正整数);(2)共有25种租车方案,A型号客车21辆,B型号客车41辆时,最省钱.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解析】(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62,且x为正整数.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.故共有25种租车方案,A型号客车21辆,B型号客车41辆时,最省钱.点睛:本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.考点:一次函数的应用;一元一次不等式的应用;最值问题.(三)一次函数与方程(组)、不等式的综合应用例3为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【答案】(1)购进篮球40个,排球20个;(2)y=5x+1200;(3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.最大利润为1415元.【分析】(1)设购进篮球m个,排球n个,根据购进篮球和排球共60个且共需4200元,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据总利润=单个利润×购进数量,即可得出y与x之间的函数关系式;(3)设购进篮球x个,则购进排球(60﹣x)个,根据进货成本在4300元的限额内且全部销售完后所获利润不低于1400元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其整数即可得出各购进方案,再结合(2)的结论利用一次函数的性质即可解决最值问题.【解析】(1)设购进篮球m个,排球n个,根据题意得:,解得:.答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,∴y与x之间的函数关系式为:y=5x+1200.点睛:本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出y与x之间的函数关系式;(3)根据一次函数的性质解决最值问题.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用;方案型;最值问题.(四)一次函数与几何综合问题例4.如图,直角坐标系xOy中,A(0,5),直线与轴交于点D,直线与轴及直线分别交于点C,E.点B,E关于轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复验算,发现,请通过计算解释他的想法错在哪里.【答案】(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.【分析】(1)利用坐标轴上点的特点确定出点C的坐标,再利用直线的交点坐标的确定方法求出点E坐标,进而得到点B坐标,最后用待定系数法求出直线AB解析式;(2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论;(3)先求出直线AB与x轴的交点坐标,判断出点C不在直线AB上,即可.【解析】(1)在直线中,令y=0,则有0=,∴x=﹣13,∴C(﹣13,0),令x=﹣5,代入,解得y=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32;(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为,令y=0,则0=,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.点睛:此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.考点:一次函数综合题.三讲方法——方法点睛1.判断实际问题函数图象的方法:一找起点,二找特殊点,三判断函数图象的变化趋势.分析函数图象的交点和转折点,说明函数在此点将发生变化,根据函数图象的变化趋势来判断函数的增减性.2.一次函数实际问题解析式的求法:在一次函数求函数解析式的过程中,通常把交点坐标代入其中一个函数解析式,求得一个字母的值,在利用待定系数法求出另一个函数的解析式.四练实题——随堂小练1.晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】①两人同行过程中的速度就是20分钟前进4000千米的速度;②爸爸有事返回的时间,比晓琳原路返回的时间20分钟少5分钟,n的值用速度乘以时间即可;③晓琳开始返回时与爸爸的距离是他们的速度和乘以时间5分钟;④两人相距900米是y1-y2=900.【详解】:①4000÷20=200米/分∴两人同行过程中的速度为200米/分,①正确

②m=20-5=15,n=200×15=3000,②正确

③晓琳开始返回时,爸爸和晓琳各走5分钟,爸爸返回的速度为100所以他们的距离为:300×5=1500(米),③不正确

④设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得15k+b=300045k+b=0,

解得k=-100b=4500

∴y2=-100x+4500

∴当0≤x≤20时,y1=200x

y1-y2=900∴200x-(-100x+4500)=900

∴x=18

当20≤x≤45时,y1=ax+b,将(20,4000)(45,0)代入得20a+b=400045a+b=0,

∴k=-160b=7200

y1=-160x+7200

y(-160x+7200)-(-100x+4500)=900,

x=30∴④正确

故选:C.【点睛】本题考查了一次函数的应用,明确横纵坐标的实际意义是解题得关键.2.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【答案】A.3.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A.4个B.3个C.2个D.1个【答案】B.【分析】根据公交车第7至12分钟行驶的路程可得其速度;由公交车速度及其行驶的路程可知其行驶这段距离的时间,根据公交车到达的时间即可知其出发时间,即可判断;根据从上公交车到他到达学校共用10分钟及公交车的行驶时间可知小刚跑步所用时间,再由跑步的路程即可得其速度;根据小刚下车时发现还有4分钟上课即可判断④.【解析】∵小刚从家出发7分钟时与家的距离是1200米,即小刚从家出发7分钟时距离学校3500﹣1200=2300m,∴公交车的速度为:=400米/分钟,故①正确;由①知公交车速度为400米/分钟,∴公交车行驶的时间为=7分钟,∴小刚从家出发乘上公交车是在第12﹣7=5分钟时,故②正确;∵从上公交车到他到达学校公用10分钟,∴小刚下公交车后跑向学校的速度是=100米/分钟,故③正确;∵小刚从下车至到达学校所用时间为5+10﹣12=3分钟,而小刚下车时发现还有4分钟上课,∴小刚下车较上课提前1分钟,故④错误;故选B.考点:一次函数的应用;数形结合.4.已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,12a+1)落在△ABC内部(不含边界),则aA.﹣3<a<2B.-2<a<23C.-43<a<0D.﹣【答案】B【解析】已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,根据一次函数图象的性质,可以得到如图所示示意图,∵点D(a,12a+1)落在△ABC∴列不等式组12解得:﹣2<a<23故选B.5.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()【答案】C.考点:1.一次函数的应用;2.综合题.6.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(QUOTE(忽略掉头等时间)明明从A地出发,同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)QUOTEy(与行走时间x(分)的函数关系的图象,则()A.明明的速度是80米/分 B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米【答案】B【解析】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,

出发20分时两人第一次相遇,C选项错误;

亮亮的速度为2800梅35=80(米/分),

两人的速度和为2800梅20=140(米/分),

明明的速度为140-80=60(米/分),A选项错误;

第二次相遇时距离B地距离为米),B选项正确;

出发35分钟时两人间的距离为60脳35=2100(米),D选项错误.

故选:B.7.如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.【答案】(1)A(4,3);(2)28.考点:1.两条直线相交或平行问题;2.勾股定理.8.某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人刚好一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,根据下表提供的信息,解答下列问题:配件种类甲乙丙每人每天加工配件的数量(个)865每个配件获利(元)15148(1)求y与x之间的关系.(2)若这些机械配件共获利1420元,请求出加工甲、乙、丙三种型号配件的人数分别是多少人?【答案】(1)y=20-3x;(2)加工甲、乙、丙三种型号配件的人数分别是5人、5人、【解析】【分析】(1)根据题意和表格中的数据可以写出y与x的函数关系式;(2)根据(1)中的结果和表格中的数据可以分别求得加工甲、乙、丙三种型号配件的人数分别是多少人.【详解】(1)由题意可得,8x+6y即y与x的函数关系式为y=20-3(2)由题意可得,,解得,x=5,,20-x答:加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.9.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?【答案】(1)120,2;(2)经过1小时甲与乙相遇且距C村60km(3)当x=h,或x=h,或x=h乙距甲10km10.丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?【答案】(1)太阳花:,绣球花:y=;(2)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.考点:1.一次函数的应用;2.最值问题;3.综合题;4.分段函数;5.分类讨论.11.梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?【答案】(1)A600包、B400包;(2)y=﹣4x+20500;(3)24.考点:1.一次函数的应用;2.综合题.12.如图所示,在平面直角坐标系中,过点A(,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【答案】(1)4;(2)垂直;(3)D(,1);(4)P(,0),(,2),(﹣3,),(3,).【分析】(1)解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;(2)由A、B、C三点坐标可知=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;(4)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解析】(1)∵,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4;(2)∵A(,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入,∴x=,∴D的坐标为(,1);(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(,1)代入y=mx+n,∴,解得:,∴直线BD的解析式为:,令y=0代入,∴x=,∴E(,0),∴OE=,∴tan∠BEC==,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°.当PA=AB时,如图1,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(,0);当PA=PB时,如图2,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为,令x=代入,∴y=2,∴P(,2);当PB=AB时,如图3,∴由勾股定理可求得:AB=,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=,∴EP1=6﹣,∴sin∠BEO=,∴FP1=,令y=代入,∴x=﹣3,∴P1(﹣3,);若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=,∴EP2=6+,∴sin∠BEO=,∴GP2=,令y=代入,∴x=3,∴P2(3,).综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(,0),(,2),(﹣3,),(3,).五练原创——预测提升1.为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【答案】(1)选择普通消费方式;(2)y普通=35x,y白金卡=;(3)当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.【分析】(1)根据普通消费方式,算出健身6次的费用,再与280、560进行比较,即可得出结论;(2)根据“普通消费费用=35×次数”即可得出y普通关于x的函数关系式;再根据“白金卡消费费用=卡费+超出部分的费用”即可得出y白金卡关于x的函数关系式;(3)先算出健身18次普通消费和白金卡消费两种形式下的费用,再令白金卡消费费用=钻石卡消费的卡费,算出二者相等时的健身次数,由此即可得出结论.考点:一次函数的应用;分段函数;方案型.2.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:表二:(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.【答案】(1)表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(2)甲种货车6辆,乙种货车2辆.【分析】(1)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整;(2)由(1)中的数据和公司有330台机器需要一次性运送到某地,可以解答本题.(2)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.考点:一次函数的应用;应用题;方案型.3.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【答案】(1);(2)9;(3)应购买9个笔芯.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解析】(1)当n=9时,,即;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.考点:一次函数的应用;频数与频率;条形统计图;最值问题;分段函数;分类讨论.4.某文具店在一段时间销售了A、B两种文具共100件.若销售A种文具8件,B种文具3件,获利100元;若销售A种文具5件,B种文具6件,获利112元.(1)求A、B两种文具每件各获利多少元?(2)若要求销售完100件文具,至少获利1081元,问:A文具至多销售多少件?(3)为减少库存,文具店决定降价销售A、B两种文具,其中A种文具每件降价a元,B种文具每件降价2a元(a≥1),文具店通过销售记录发现:销售利润随A文具销售量的增大而减小,直接写出a的取值范围.【答案】(1)A种文具每件获利8元;B种文具每件获利12元;(2)A种文具至多销售29件;(3)1≤a<4.【解析】解:(1)设A,B两种文具每件分别获利m元和n元,根据题意:8m+3n=1005m+6n=112解得:m=8n=12即:A种文具每件获利8元;B种文具每件获利12元;(2)设A种文具销售x件,B种文具销售(100-x)件,根据题意:8x+12(100-x)≥1081,解得:x≤293∵x为正整数,∴x≤29即:A种文具至多销售29件;(3)1≤a<4理由如下:设销售总利润为w元,根据题意:w=(8-a)x+(12-a)(100-x)=(a-4)x+1200-200a∵w随x的增大而减小∴a-4<0解得:a<4,又a≥1∴1≤a<45某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示。(1)a=,b=;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【答案】(1)a=6,b=8;(2)y2=80x(0鈮鈮?0)64x+160(x>10);(3)A团有20人,B【解析】【分析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,∴a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,∴b=;(2)0≤x≤10时,设y2=k2x,把(10,800)代入得10k2=800,解得k2=80,∴y2=80x,x>10,设y2=kx+b,把(10,800)和(20,1440)代入得10k+b=80020k+b=1440解得∴y2=64x+160∴y(3)设B团有n人,则A团的人数为(50-n)当0≤n≤10时80n+48(50-n)=3040,解得n=20(不符合题意舍去)当n>10时,解得n=30.则50-n=20人,则A团有20人,B团有30人.6.某水果积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?【答案】(1)装运乙种水果的车有2辆、丙种水果的汽车有6辆;(2)装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366元.【分析】(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组,即可解答;(3)设总利润为w千元,表示出w=10m+216.列出不等式组,确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.【解析】(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得:.答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)设总利润为w千元,w=4×5m+2×7(m﹣12)=4×3(32﹣2m)=10m+216.∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,在w=10m+216中,w随x的增大而增大,∴当m=15时,W最大=366(千元).答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366元.考点:二元一次方程组的应用;一次函数的应用;最值问题.7.如图,在平面直角坐标系xOy中,一次函数的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【答案】(1)点B(0,1)在直线O′B′上;(2)当α=120°时,四边形ADO′B′是平行四边形.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解析】解;(1)如图1中,∵一次函数的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得:,∴直线O′B′的解析式为,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.考点:一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.8.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论