2020年广东省云浮市数学高二下期末教学质量检测试题含解析_第1页
2020年广东省云浮市数学高二下期末教学质量检测试题含解析_第2页
2020年广东省云浮市数学高二下期末教学质量检测试题含解析_第3页
2020年广东省云浮市数学高二下期末教学质量检测试题含解析_第4页
2020年广东省云浮市数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020年广东省云浮市数学高二(下)期末教学质量检测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限2.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则A.r2<r1<0 B.r2<0<r1 C.0<r2<r1 D.r2=r13.设,,这两个正态分布密度曲线如图所示.下列结论中正确的是A., B.C., D.4.双曲线的离心率等于2,则实数a等于()A.1 B. C.3 D.65.如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为A.2 B.4 C.6 D.86.某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.7.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.8.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.9.已知扇形的圆心角为,弧长为,则扇形的半径为()A.7 B.6 C.5 D.410.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则最多有一个二等品的概率为()A.B.C.D.11.甲、乙两人独立地对同一目标各射击一次,其命中率分别为,现已知目标被击中,则它是被甲击中的概率是()A. B. C. D.12.在等差数列中,,,则公差()A.-1 B.0 C.1 D.2二、填空题(本题包括4个小题,每小题5分,共20分)13.若,则________14.若三角形内切圆半径为r,三边长为a,b,c,则,利用类比思想:若四面体内切球半径为R,四个面的面积为,则四面体的体积________.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,且,b=2,若满足条件的△ABC有且仅有一个,则a的取值范围是_____.16.若随机变量,且,则随机变量的方差的值为______.三、解答题(本题包括6个小题,共70分)17.对任意正整数,,定义函数满足如下三个条件:①;②;③.(1)求和的值;(2)求的解析式.18.对某班50名学生的数学成绩和对数学的兴趣进行了调查,统计数据如下表所示:对数学感兴趣对数学不感兴趣合计数学成绩好17825数学成绩一般52025合计222850(1)试运用独立性检验的思想方法分析:学生学习数学的兴趣与数学成绩是否有关系,并说明理由.(2)从数学成绩好的同学中抽取4人继续调查,设对数学感兴趣的人数为,求的分布列和数学期望.附:0.0500.0100.0013.8416.63510.828.19.(6分)某地为了调查市民对“一带一路”倡议的了解程度,随机选取了100名年龄在20岁至60岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:年龄20,3030,4040,5050,60调查人数/名30302515了解“一带一路”倡议/名1228155(I)完成下面的2×2列联表,并判断是否有90%的把握认为以40岁为分界点对“一带一路”倡议的了解有差异(结果精确到0.001);年龄低于40岁的人数年龄不低于40岁的人数合计了解不了解合计(Ⅱ)以频率估计概率,若在该地选出4名市民(年龄在20岁至60岁),记4名市民中了解“一带一路”倡议的人数为X,求随机变量X的分布列,数学期望和方差.附:P0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635K2=n20.(6分)已知函数,.(1)若恒成立,求的取值范围;(2)已知,若使成立,求实数的取值范围.21.(6分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)若直线与曲线相交于不同的两点,,若是的中点,求直线的斜率.22.(8分)已知正项数列{an}为等比数列,等差数列{bn}的前n项和为Sn(n∈N*),且满足:S11=208,S9﹣S7=41,a1=b2,a1=b1.(1)求数列{an},{bn}的通项公式;(2)设Tn=a1b1+a2b2+…+anbn(n∈N*),求Tn;(1)设,是否存在正整数m,使得cm·cm+1·cm+2+8=1(cm+cm+1+cm+2).

参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.2.B【解析】【分析】【详解】分析:求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.详解:变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),可得:变量Y与X之间成正相关,因此;变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),可得:变量V与U之间成负相关,因此第一组数据的系数大于0,第二组数据的相关系数小于0.故选B.点睛:本题考查了变量之间的线性相关系数,考查了推理能力.3.D【解析】【分析】由正态分布的性质,结合图像依次分析选项即可得到答案。【详解】由题可得曲线的对称轴为,曲线的对称轴为,由图可得,由于表示标准差,越小图像越瘦长,故,故A,C不正确;根据图像可知,,,;所以,,故C不正确,D正确;故答案选D【点睛】本题考查正态分布曲线的特点以曲线所表示的意义,考查正态分布函数中两个特征数均值和方差对曲线的位置和形状的影响,正态分布曲线关于对称,且越大图像越靠右边,表示标准差,越小图像越瘦长,属于基础题。4.A【解析】【分析】利用离心率的平方列方程,解方程求得的值.【详解】由可得,从而选A.【点睛】本小题主要考查已知双曲线的离心率求参数,考查方程的思想,属于基础题.5.B【解析】【分析】由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半.【详解】由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半,即为2×2×2=1.故选B.【点睛】本题考查由三视图求体积,考查学生的计算能力,确定几何体的形状是关键.6.B【解析】【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积.【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为.故选B.【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.7.D【解析】【分析】根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.8.C【解析】【分析】由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【点睛】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.9.B【解析】【分析】求得圆心角的弧度数,用求得扇形半径.【详解】依题意为,所以.故选B.【点睛】本小题主要考查角度制和弧度制转化,考查扇形的弧长公式的运用,属于基础题.10.B【解析】解:解:从这批产品中抽取4个,则事件总数为个,其中恰好有一个二等品的事件有个,根据古典概型的公式可知恰好有一个二等品的概率为11.D【解析】分析:根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,由相互独立事件的概率公式,计算可得目标被击中的概率,进而由条件概率的公式,计算可得答案.详解:根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,则P(C)=1﹣P()P()=1﹣(1﹣0.8)(1﹣0.5)=0.9;则目标是被甲击中的概率为P=.故答案为:D.点睛:(1)本题主要考查独立事件的概率和条件概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2)条件概率的公式:,=.条件概率一般有“在已发生的条件下”这样的关键词,表明这个条件已经发生,发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.12.C【解析】【分析】全部用表示,联立方程组,解出【详解】【点睛】本题考查等差数列的基本量计算,属于基础题。二、填空题(本题包括4个小题,每小题5分,共20分)13.10【解析】【分析】根据组合数的性质,即可求得的值.【详解】根据组合数的性质所以故答案为:10【点睛】本题考查了组合数的简单性质,属于基础题.14..【解析】试题分析:由题意得三角形的面积可拆分成分别由三条边为底,其内切圆半径为高的三个小三角形的面积之和,从而可得公式,由类比思想得,四面体的体积亦可拆分成由四个面为底,其内切圆的半径为高的四个三棱锥的体积之和,从而可得计算公式.考点:1.合情推理;2.简单组合体的体积(多面体内切球).【方法点晴】此题主要考查合情推理在立体几何中的运用方面的内容,属于中低档题,根据题目前半段的“分割法”求三角形面积的推理模式,即以三角形的三条边为底、其内切圆半径为高分割成三个三角形面积之和,类似地将四面体以四个面为底面、其内切球半径为高分割成四个三棱锥(四面体)体积之和,从而问题可得解决.15.a或0<a≤2【解析】【分析】先根据求得,结合正弦定理及解的个数来确定a的取值范围.【详解】因为,所以,由于在三角形中,所以,即,因为,所以.由正弦定理可得,因为满足条件的△ABC有且仅有一个,所以或者,所以或者.【点睛】本题主要考查利用三角形解的个数求解参数的范围,三角形解的个数一般可以利用几何法或者代数法来求解,侧重考查逻辑推理的核心素养.16.15【解析】【分析】根据二项分布的方差公式先求得,再由随机变量即可求得.【详解】随机变量,根据二项分布的方差公式可得,由,所以,故答案为:15.【点睛】本题考查了二项分布方差的求法,复合变换形式方差的求法,属于基础题.三、解答题(本题包括6个小题,共70分)17.(1),(2)【解析】【分析】(1)由已知关系式直接推得即可;(2)由依次推出,再由,,依次推出即可.【详解】解:(1)因,令代入得:,令,代入得:,又,令代入得:.令,代入得:.(2)由条件②可得,,…….将上述个等式相加得:.由条件③可得:,,…….将上述个等式相加得:.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.18.(1)有99.9%的把握认为有关系,理由详见解析;(2)分布列详见解析,数学期望为2.72【解析】【分析】根据表中数据计算观测值,对照临界值得出结论;

由题意知随机变量X的可能取值,计算对应的概率值,写出分布列和数学期望值.【详解】(1).因为,所以有99.9%的把握认为有关系.(2)由题意知,的取值为0,1,2,3,1.因为,.所以,分布列为01231所以,.【点睛】本题考查了独立性检验与离散型随机变量的分布列应用问题,是中档题.19.(Ⅰ)填表见解析,有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异(Ⅱ)见解析【解析】【分析】(1)由表格读取信息,年龄低于40岁的人数共60人,年龄不低于40岁的人数,代入K2(2)在总体未知的市民中选取4人,每位市民被选中的概率由频率估计概率算出35,所以随机变量X服从二项分布【详解】解:(Ⅰ)根据已知数据得到如下列联表年龄低于40岁的人数年龄不低于40岁的人数合计了解402060不了解202040合计6040100K故有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异.(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为60100=3PX=0=C40PX=3=C则X的分布列为X01234P169621621681EX=4×3【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.20.(1)或;(2)【解析】分析:(1)由,可得若恒成立,只需,从而可得结果;(2)使成立等价于,成立,利用基本不等式求出的最小值为,从而可得结果.详解:(1)∵,若恒成立,需,即或,解得或.(2)∵,∴当时,,∴,即,成立,由,∵,∴(当且仅当等号成立),∴.又知,∴的取值范围是.点睛:本题主要考基本不等式求最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法①求得的最大值.21.(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)直接利用极化直的公式化简得到曲线的直角坐标方程;(Ⅱ)将直线的参数方程代入曲线的直角坐标方程,再根据求出直线的斜率.【详解】解:(Ⅰ)由,,,得即所求曲线的直角坐标方程为:(Ⅱ)将直线的参数方程代入曲线的直角坐标方程,得由是的中点知,即所以直线的斜率为.【点睛】本题主要考查极直互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.(1);(2);(1)存在,m=2.【解析】分析:(1)先根据已知条件列方程求出b1=﹣2,d=1,得到等差数列{bn}的通项,再求出,即得等比数列{an}的通项.(2)利用错位相减法求Tn.(1)对m分类讨论,探究是否存在正整数m,使得cm·cm+1·cm+2+8=1(cm+cm+1+cm+2).详解:(1)等差数列{bn}的前n项和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论