定积分在几何学上的应用副本_第1页
定积分在几何学上的应用副本_第2页
定积分在几何学上的应用副本_第3页
定积分在几何学上的应用副本_第4页
定积分在几何学上的应用副本_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【教育类精品资料】

5/13/20241§6.4定积分的应用第六章(Applications

ofDefiniteIntegral)二、定积分在几何学上的应用一、定积分的元素法三、思考与练习5/13/20242一、定积分的元素法1.什么问题可以用定积分解决?表示为1)所求量U是与区间[a,b]上的某分布f(x)

有关的2)U关于区间[a,b]

具有可加性,即可通过“大化小,常代变,近似和,取极限”定积分定义一个整体量;5/13/20243第一步利用“化整为零,以常代变”求出局部量的微分表达式第二步利用“积零为整,无限累加”求出整体量的积分表达式这种分析方法称为元素法(或微元法)元素的几何形状常取为:条、带、段、环、片、壳等近似值精确值2.如何应用定积分解决问题?5/13/20244定积分在几何学上的应用

1.平面图形的面积5/13/202455/13/202465/13/20247解:

利用对称性,所围图形的面积.有利用椭圆的参数方程应用定积分换元法得当a=b时得圆面积公式例3求椭圆5/13/20248设所给立体垂直于x轴的截面面积为A(x),则对应于小区间的体积元素为因此所求立体体积为上连续,2.平行截面面积为已知的立体的体积5/13/20249轴旋转一周围成的立体体积时,特别地,当考虑连续曲线段有当考虑连续曲线段绕y轴旋转一周围成的立体体积时,有5/13/202410所围图形绕x轴旋转而转而成的椭球体的体积.解:(方法1)

利用直角坐标方程则(利用对称性)例4计算由椭圆5/13/202411内容小结1.掌握定积分的元素法,并会应用元素法来解决一些几何方面的问题。2.定积分几何学上的应用(1)平面图形面积(直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论