版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海虹口区教育学院附属中学高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,.则(
)A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件参考答案:A略2.若,则的取值范围是(
)A.
B.
C.
D.参考答案:D3.命题“所有实数的平方都是正数”的否定为A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方是正数D.至少有一个实数的平方不是正数参考答案:D全称命题的否定式特称命题,所以“所有实数的平方都是正数”的否定为“至少有一个实数的平方不是正数”选D.4.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b分别为2,8,则输出的a等于()A.4 B.0 C.14 D.2参考答案:D【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:根据已知中的程序框图可得,该程序的功能是计算2,8的最大公约数,由2,8的最大公约数为2,故选:D【点评】本题考查的知识点是程序框图,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.5.命题p:x∈R且满足sin2x=1.命题q:x∈R且满足tanx=1.则p是q的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】根据三角函数的性质以及充分条件和必要条件的定义进行判断.【解答】解:由sin2x=1得2x=+2kπ,k∈Z,即x=,k∈Z,由tanx=1,得x=,k∈Z,∴p是q的充要条件.故选:C.6.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是
A.
B.
C.
D.
参考答案:答案:C解析:棱长为2的正四面体ABCD的四个顶点都在同一个球面上,若过该球球心的一个截面如图为△ABF,则图中AB=2,E为AB中点,则EF⊥DC,在△DCE中,DE=EC=,DC=2,∴EF=,∴三角形ABF的面积是,选C.7.如下程序框图输出的结果是,则判断框内应填入的条件是
A.
B.
C.
D.参考答案:A8.下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中△ABC为直角三角形,四边形DEFC为它的内接正方形,已知BC=2,AC=4,在△ABC内任取一点,则此点取自正方形DEFC内的概率为A. B.C. D.参考答案:B【分析】先求出正方形DEFC的面积,再根据几何概型概率求结果.【详解】设正方形DEFC的边长为,则,因此所求概率为,选B.【点睛】当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.9.已知锐角满足:,,则的大小关系是(
)A、
B、
C、
D、参考答案:A略10.函数的一个零点落在下列哪个区间 (
)
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.对于函数f(x)=tex﹣x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是
.参考答案:(0,)考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:转化tex≤x,为t的不等式,求出表达式的最大值,以及单调区间,即可得到t的取值范围.解答: 解:tex≤x(e是自然对数的底数),转化为t≤,令y=,则y′=,令y′=0,可得x=1,当x>1时,y′<0,函数y递减;当x<1时,y′>0,函数y递增.则当x=1时函数y取得最大值,由于存在实数a、b,使得f(x)≤0的解集为[a,b],则由右边函数y=的图象可得t的取值范围为(0,).故答案为(0,).点评:本题考查函数的导数的最值的应用,考查转化思想与计算能力.属于中档题.12.在边长为1的正方形ABCD中,E、F分别为BC、DC的中点,则__________.参考答案:1略13.已知正数a,b满足+=﹣5,则ab的最小值为
.参考答案:36【分析】正数a,b满足+=﹣5,﹣5≥,化为:﹣5﹣6≥0,解出即可得出.【解答】解:∵正数a,b满足+=﹣5,∴﹣5≥,化为:﹣5﹣6≥0,解得≥6,当且仅当=,+=﹣5,即a=2,b=18时取等号.解得ab≥36.故答案为:36.【点评】本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.14.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.参考答案:12【考点】计数原理的应用.【分析】由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,可得结论.【解答】解:由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,共有2×6=12种方法.故答案为:12.15.已知向量与的夹角是,且,若,则实数=-----______.参考答案:16.己知函数,则=.参考答案:【考点】3T:函数的值.【分析】先求出f()==﹣2,从而=f(﹣2),由此能求出结果.【解答】解:∵函数,∴f()==﹣2,=f(﹣2)=﹣=.故答案为:.17.已知,,
。参考答案:,所以,.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设数列{an}的前n项和为Sn,已知a1=2,an+1=2Sn+2(n∈N*).(1)求数列{an}的通项公式;(2)设bn=,数列{}的前n项和为Tn,试证明:Tn<.参考答案:【考点】数列的求和;数列递推式.【分析】(1)根据数列的项和和之间的关系,即可求数列{an}的通项公式;(2)bn==,=,累加即可求数列{}的前n项和为Tn【解答】解:(1)由题意得an+1=2Sn+2,an=2Sn﹣1+2,(n≥2),两式相减得an+1﹣an=2Sn﹣2Sn﹣1=2an,则an+1=3an,n≥2,所以当n≥2时,{an}是以3为公比的等比数列.因为a2=2S1+2=4+2=6,满足对任意正整数成立{an}是首项为2,公比为3的等比数列,∴数列{an}的通项公式;an=2×3n﹣1(2)证明:bn==,=,Tn=×[+…+]=<.19.已知函数f(x)=,其中a,b∈R.(Ⅰ)当a<0时,且f(x)为奇函数,求f(x)的表达式;(Ⅱ)当a>0时,且f(x)在(﹣1,1)上单调递减,求b﹣a的值.参考答案:【考点】3E:函数单调性的判断与证明;5B:分段函数的应用.【分析】(Ⅰ)运用奇函数的性质f(0)=0,可得a,再求x<0的解析式,进而得到b=1,即可得到f(x)的解析式;(Ⅱ)当a>0时,且f(x)在(﹣1,1)上单调递减,则有,运用不等式的性质,即可得到a=1,b=﹣1,进而得到b﹣a.【解答】解:(Ⅰ)由于f(x)为奇函数,则f(0)=a2﹣1=0,由a<0,则a=﹣1,x≥0时,f(x)=(x+1)2﹣1,则x<0,f(x)=﹣f(﹣x)=﹣[(﹣x+1)2﹣1]=﹣(x﹣1)2+1=﹣(x﹣b)2+1,即有b=1,故f(x)=;(Ⅱ)当a>0时,且f(x)在(﹣1,1)上单调递减,则,则有a2≥1,b2≥1,a2+b2≥2,又a2+b2≤2,即有a2+b2=2,即a=1,b=﹣1,则有b﹣a=﹣2.20.已知函数(为实数).(I)若在处有极值,求的值;(II)若在上是增函数,求的取值范围.参考答案:(I)解:由已知得的定义域为
又
……3分
由题意得
……5分(II)解:依题意得
对恒成立,
……7分
……9分
的最大值为
的最小值为
……11分
又因时符合题意为所求
……13分
21.如图,四边形与均为菱形,,且.(1)求证:;(2)求证:;(3)求二面角的余弦值.参考答案:(1)证明:设AC与BD相交于点O,连结FO.因为四边形ABCD为菱形,所以,且O为AC中点.又FA=FC,所以.
因为,所以.
(2)证明:因为四边形与均为菱形,所以因为所以又,所以平面又所以.
(3)解:因为四边形BDEF为菱形,且,所以为等边三角形.因为为中点,所以由(Ⅰ)知
,故
.
法一:由两两垂直,建立如图所示的空间直角坐标系.
设AB=2.因为四边形ABCD为菱形,,则BD=2,所以OB=1,.则
所以.
设平面BFC的法向量为则有
所以取,得.
易知平面的法向量为.
由二面角A-FC-B是锐角,得.
所以二面角A-FC-B的余弦值为法二:取的中点,连接,,∵四边形ABCD与BDEF均为菱形,,且∴,设为∵为、中点,∴,∴∴,
∴是二面角的平面角
∵∴,,又∴∴二面角A-FC-B的余弦值为略22.(本小题满分15分)已知椭圆:,设该椭圆上的点到左焦点的最大距离为,到右顶点的最大距离为.(Ⅰ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《大学生心理健康》2021-2022学年第一学期期末试卷
- 哈工大建筑工程法规与合同试题
- 食品安全与营养健康科普大赛
- 2024酒店会议服务合同
- 专题11.分析人物形象-2023年四升五语文暑期阅读专项提升(统编版)
- 2024【外架工操作证】正规的外架工程班组劳务包干合同
- 2024家庭保姆雇佣合同新
- 规划课题申报范例:大学生毕业实习课程化管理的体制机制建构(附可修改技术路线图)
- 规划课题申报范例:“双减”背景下小学数学教学提质增效策略研究(附可修改技术路线图)
- 深圳大学《中国民俗文化》2022-2023学年第一学期期末试卷
- 体育教师先进个人事迹材料
- 2025届江苏省苏州市第一中学物理高三第一学期期末学业水平测试模拟试题含解析
- 企业财务管理数字化转型实施方案
- 第九课+发展中国特色社会主义文化+课件高中政治统编必修四哲学与文化
- 牙用漂白凝胶市场环境与对策分析
- 2024年山东省济南市中考英语试题卷(含答案)
- 人教版七年级道德与法治上册 期中复习知识梳理
- 3.1 农业区位因素及其变化 课件 高一地理人教版(2019)必修第二册
- 建筑施工企业(安全管理)安全生产管理人员安全生产考试参考题及答案
- 锅炉应急预案演练方案
- 《11~20各数的认识》(教案)-2024-2025学年一年级上册数学人教版
评论
0/150
提交评论