版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市东阳中学2023-2024学年高三考前热身数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要2.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.3.已知,,则的大小关系为()A. B. C. D.4.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件6.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.7.运行如图程序,则输出的S的值为()A.0 B.1 C.2018 D.20178.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种9.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.10.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线11.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.12.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为_____________.14.若,则=____,=___.15.已知等比数列的各项都是正数,且成等差数列,则=__________.16.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.18.(12分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.19.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.20.(12分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.22.(10分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.2、B【解析】
建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.3、D【解析】
由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.4、C【解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.5、C【解析】
先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.6、A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.7、D【解析】
依次运行程序框图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环.输出1.选D.8、C【解析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.9、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、C【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.11、A【解析】
将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.12、C【解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可得,,解不等式可求.【详解】解:由题意可得,,解可得,,故答案为.【点睛】本题主要考查了函数的定义域的求解,属于基础题.14、12821【解析】
令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.15、【解析】
根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.16、【解析】
根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,,得.故答案为:【点睛】本题主要考查圆锥体的体积,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则===因为,所以=1,解得联立,得,△=8>0设,则【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考查学生的数学运算能力.18、(1);(2)见解析【解析】
(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、、三点共线,只需证,将分子用纵坐标表示,即可证明结论.【详解】(1)由于,将代入椭圆方程,得,由题意知,即.又,所以,.所以椭圆的方程为.(2)解法一:依题意直线斜率不为0,设的方程为,联立方程,消去得,由题意,得恒成立,设,,所以,直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子,.所以,,三点共线.解法二:当直线的斜率不存在时,由题意,得的方程为,代入椭圆的方程,得,,直线的方程为.则,,,所以,即,,三点共线.当直线的斜率存在时,设的方程为,,,联立方程消去,得.由题意,得恒成立,故,.直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子所以.所以,,三点共线.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练掌握根与系数关系,设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.19、(1);(2).【解析】
(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.20、(1);(2)或.【解析】试题分析:直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.试题解析:(1)解:设,,,由和圆相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).当时,,故直线的方程为.(2)设,,,则.∴.设,由直线和圆相切,得,即.设,同理可得:.故是方程的两根,故.由得,故.同理,则,即.∴,解或.当时,;当时,.故或.21、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 登高架设作业安全培训
- 《基于高中生心理资本现状调查的教育管理策略研究》
- 《双应力平台星形结构设计与力学性能研究》
- 《复合异位酸对山羊营养物质消化的影响》
- 《单层二硫化钼的制备及其光学性能研究》
- 《基于财务角度的LF农信社授信风险分析》
- 《基于有机酸预处理的小麦秸秆聚糖组分水解技术研究》
- 《南海中尺度涡的时空特征研究》
- 《中日赠礼文化的比较研究》
- 四川省乐山市2023-2024学年高三物理上学期第一次月考理综试题含解析
- 国家开放大学《基础会计》章节测试参考答案
- 部队教案-班队列教案
- 村镇建筑工匠培训班试题(共3页)
- 中等职业学校教学质量评价体系1
- 常见急危重病人抢救流程图上墙
- 股票交易记录模板
- 内科学常见疾病英语词汇
- 2021年国网电网建设(变电专业)考试题库(含答案)
- LED灯珠检验标准
- 肠梗阻病人的护理-PPT
- 酒店管理 专业建设 建设规划申报书
评论
0/150
提交评论