版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄第八中学2024年高三下第一次测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列不等式不能成立的是()A. B. C. D.2.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()A. B.C. D.3.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.4.已知函数在上单调递增,则的取值范围()A. B. C. D.5.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.6.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.7.已知,,由程序框图输出的为()A.1 B.0 C. D.8.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.9.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则11.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A. B. C.- D.-12.i是虚数单位,若,则乘积的值是()A.-15 B.-3 C.3 D.15二、填空题:本题共4小题,每小题5分,共20分。13.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.14.集合,,则_____.15.在中,内角的对边分别是,若,,则____.16.如图,已知圆内接四边形ABCD,其中,,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)18.(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.19.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?20.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.21.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.22.(10分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.2、A【解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得:,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为,由椭圆和双曲线的定义得:,解得,设,在中,由余弦定理得:,化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.3、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.4、B【解析】
由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.5、B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.6、A【解析】
根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.7、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.8、D【解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.9、B【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.10、C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.11、A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.12、B【解析】,∴,选B.二、填空题:本题共4小题,每小题5分,共20分。13、1055【解析】
模拟执行程序框图中的程序,即可求得结果.【详解】模拟执行程序如下:,满足,,满足,,满足,,满足,,不满足,输出.故答案为:1055.【点睛】本题考查程序框图的模拟执行,属基础题.14、【解析】
分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.15、【解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16、【解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,结合题意得出,推出矛盾,可得出①②不能同时成为的条件,由此可得出结论;(2)在符合条件的两组三角形中利用余弦定理和正弦定理求出对应的边和角,然后利用三角形的面积公式可求出的面积.【详解】(1)由①得,,所以,由②得,,解得或(舍),所以,因为,且,所以,所以,矛盾.所以不能同时满足①,②.故满足①,③,④或②,③,④;(2)若满足①,③,④,因为,所以,即.解得.所以的面积.若满足②,③,④由正弦定理,即,解得,所以,所以的面积.【点睛】本题考查三角形能否成立的判断,同时也考查了利用正弦定理和余弦定理解三角形,以及三角形面积的计算,要结合三角形已知元素类型合理选择正弦定理或余弦定理解三角形,考查运算求解能力,属于中等题.18、(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】
(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,,则四边形为平行四边形又∴,消去得:顶点的轨迹方程为【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.19、(1);(2)当BP为cm时,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'(t)>0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,因为恒成立,所以f(t)<0,所以tan(α+β)<0,,因为y=tanx在上是增函数,所以当时,α+β取得最小值.【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.20、(1)(2)4【解析】
(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.【详解】解:任意都有,数列是等差数列,,又是与的等比中项,,设数列的公差为,且,则,解得,,;由题意可知,①,②,①﹣②得:,,,由得,,,,满足条件的最小的正整数的值为.【点睛】本题考查等差数列的通项公式和前项和公式及错位相减法求和.(1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个量,一般可设出和,利用等差数列的通项公式和前项和公式列方程(组)求解即可.(2)错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解;在写“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式21、(1);(2)【解析】
(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,,当时,,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,∴围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,∴,∴.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年监护病房项目申请报告范文
- 2024-2030年中国盐化工行业十三五规划及投资风险分析报告
- 2024-2030年中国白瓜籽油产品产业未来发展趋势及投资策略分析报告
- 2024年数控车铣中心项目立项申请报告
- 2024-2030年中国电脑设备行业竞争战略与投资模式分析报告
- 2024年环氧大豆油项目规划申请报告
- 2024-2030年中国玉米种植及深加工行业产能预测及发展潜力研究报告
- 2024-2030年中国炭化木产业发展战略及投资规模分析报告(版)
- 2024-2030年中国湖畔营项目可行性研究报告
- 《基于中老年教职工纵向体检数据的BMI、血糖及2型糖尿病相关研究》
- 城乡生活污水处理环境影响与风险评估
- 厂房租赁合同范本版(18篇)
- DB22T 5165-2024 建设工程消防验收现场评定标准
- 浙江省嵊州市三界片2024-2025学年七年级上学期期中科学测试卷
- 能源中国学习通超星期末考试答案章节答案2024年
- 2024广东省云浮市郁南县财政局工程造价类专业人员招聘4人高频难、易错点500题模拟试题附带答案详解
- 军队文职考试《公共科目》试题及答案指导(2024年)
- 山东省青岛市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年高频难、易错点500题模拟试题附带答案详解
- 小学心理健康课教案分享-《身体“红绿灯”》
- 2022年信息科技课程新课标义务教育信息科技课程标准2022版解读课件
评论
0/150
提交评论