![湖北省孝感市汉川市2024年中考联考数学试卷含解析_第1页](http://file4.renrendoc.com/view4/M00/30/13/wKhkGGY8s7SABlQsAAHKq1dW0Gw729.jpg)
![湖北省孝感市汉川市2024年中考联考数学试卷含解析_第2页](http://file4.renrendoc.com/view4/M00/30/13/wKhkGGY8s7SABlQsAAHKq1dW0Gw7292.jpg)
![湖北省孝感市汉川市2024年中考联考数学试卷含解析_第3页](http://file4.renrendoc.com/view4/M00/30/13/wKhkGGY8s7SABlQsAAHKq1dW0Gw7293.jpg)
![湖北省孝感市汉川市2024年中考联考数学试卷含解析_第4页](http://file4.renrendoc.com/view4/M00/30/13/wKhkGGY8s7SABlQsAAHKq1dW0Gw7294.jpg)
![湖北省孝感市汉川市2024年中考联考数学试卷含解析_第5页](http://file4.renrendoc.com/view4/M00/30/13/wKhkGGY8s7SABlQsAAHKq1dW0Gw7295.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省孝感市汉川市2024年中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°2.计算(-1)×2的结果是()A.-2 B.-1 C.1 D.23.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.164.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4405.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100° B.110° C.120° D.130°6.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为7.计算:的结果是()A. B.. C. D.8.二次函数y=(2x-1)2+2的顶点的坐标是()A.(1,2) B.(1,-2) C.(,2)
D.(-,-2)9.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和910.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.12.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_____cm.13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.14.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(1)OM的长等于_______;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.15.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.16.已知ba=2三、解答题(共8题,共72分)17.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣118.(8分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.19.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.20.(8分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?21.(8分)先化简,再求值,,其中x=1.22.(10分)一次函数y=34x的图象如图所示,它与二次函数y=ax2(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.23.(12分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF.MH(2)若BC2=BD.DM,求证:∠AMB=∠ADC.24.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.2、A【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-1×2=-故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.3、D【解析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.4、A【解析】
根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.5、B【解析】
根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.6、C【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A.事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B.体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D.掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.7、B【解析】
根据分式的运算法则即可求出答案.【详解】解:原式===故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.8、C【解析】试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系9、C【解析】
如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.10、B【解析】
根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,y的值随x值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得-b观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以a+c<观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,y的值随x值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6个小题,每小题3分,共18分)11、48【解析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.12、1cm【解析】
首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在Rt△OAC中,根据勾股数得到AC=4,这样即可得到AB的长.【详解】解:如图,连接OA,则OA=5,OC=3,OC⊥AB,∴AC=BC,∴在Rt△OAC中,AC==4,∴AB=2AC=1.故答案为1.【点睛】本题考查垂径定理;勾股定理.13、-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得14、(1)4;(2)见解析;【解析】
解:(1)由勾股定理可得OM的长度(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求。【详解】(1)OM==4;故答案为4.(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求.【点睛】(1)根据勾股定理即可得到结论;(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.15、48°【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【详解】如图,在⊙O上取一点K,连接AK、KC、OA、OC.∵四边形AKCB内接于圆,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分别切⊙O于A、C两点,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案为48°.【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.16、3【解析】
依据ba=23可设a=3k,b=2【详解】∵ba∴可设a=3k,b=2k,∴aa-b故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.三、解答题(共8题,共72分)17、1【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【详解】解:原式=2﹣+2×﹣3+1=1.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.18、(1)直线l与⊙O相切;(2)证明见解析;(3)214【解析】试题分析:(1)连接OE、OB、OC.由题意可证明BE=(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.试题解析:(1)直线l与⊙O相切.理由如下:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考点:圆的综合题.19、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴11=2(2+AD),∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.20、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】
设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论.【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:.答:购进猕猴桃20千克,购进芒果30千克.元.答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.21、1.【解析】
先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()×=×=;将x=1代入原式==1.【点睛】分式的化简求值22、(1)点C(1,32);(1)①y=38x1-32x;②y=-12x【解析】试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=34x求得y=32,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,34m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,34m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.当x=1时,y=34x=32,∴C(1,(1)①∵点D与点C关于x轴对称,∴D(1,-32设A(m,34m)(m<1),由S△ACD=3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人形机器人行业的未来发展潜力
- 2025至2031年中国感应活动车辆标牌行业投资前景及策略咨询研究报告
- 2025至2031年中国双层操作台行业投资前景及策略咨询研究报告
- 2025年三合一开瓶器项目可行性研究报告
- 2025至2030年氨基酸粉项目投资价值分析报告
- 2025至2030年中国真皮带数据监测研究报告
- 2025至2030年中国环保窗贴数据监测研究报告
- 2025至2030年中国沙漠轮胎数据监测研究报告
- 2025至2030年中国氟化钙单晶数据监测研究报告
- 2025至2030年中国内燃机曲轴数据监测研究报告
- 医院消防安全培训课件
- 质保管理制度
- 《00541语言学概论》自考复习题库(含答案)
- 2025年机关工会个人工作计划
- 2024年全国卷新课标1高考英语试题及答案
- 2024年10月自考13003数据结构与算法试题及答案
- 华为经营管理-华为激励机制(6版)
- 江苏省南京市、盐城市2023-2024学年高三上学期期末调研测试+英语+ 含答案
- 2024护理不良事件分析
- 光伏项目的投资估算设计概算以及财务评价介绍
- 干燥综合征诊断及治疗指南
评论
0/150
提交评论