数学八年级下册数学期末试卷中考真题汇编解析版_第1页
数学八年级下册数学期末试卷中考真题汇编解析版_第2页
数学八年级下册数学期末试卷中考真题汇编解析版_第3页
数学八年级下册数学期末试卷中考真题汇编解析版_第4页
数学八年级下册数学期末试卷中考真题汇编解析版_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学八年级下册数学期末试卷中考真题汇编[解析版]一、选择题1.使代数式有意义的x的取值范围是()A. B. C. D.2.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.9,12,15 D.1,2,3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C4.某校劳动实践活动中,甲,乙两块试验田3次果蔬平均产量都是,方差分别是,,则这两块试验田3次果蔬产量较稳定的是()A.甲 B.乙 C.甲和乙一样稳定 D.不能确定5.如图,在△ABC中,AC=6,AB=8,BC=10,点D是BC的中点,连接AD,分别以点A,B为圆心,CD的长为半径在△ABC外画弧,两弧交于点E,连接AE,BE.则四边形AEBC的面积为()A.30 B.30 C.24 D.366.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD等于()A.50° B.60° C.70° D.80°7.如图,在平行四边形中,,以点为圆心,为半径画弧与交于点,然后以大于为半径,分别以,为圆心画弧交于点,连接交于点,若,,则的长为()A. B. C.5 D.108.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A. B.10C. D.12二、填空题9.若函数在实数范围内有意义,则自变量的取值范围是______.10.正方形的对角线长为,面积为______.11.矩形ABCD的面积为48,一条边AB的长为6,则矩形的对角线_______.12.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=10,BC=16,则EF的长是_______13.一根弹簧的原长为12cm,它能挂的重量不能超过15kg并且每挂重1kg就伸长cm,写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式并标明x的取值范围___________.14.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).15.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为________.16.如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=__;CF=__;DE=__.三、解答题17.计算:(1);(2);(3);(4).18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图:(1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点.(2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点.(3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等.20.如图,菱形ABCD的对角线AC和BD交于点O,点E在线段OB上(不与点B,点O重合),点F在线段OD上,且DF=BE,连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)若AC=4,BD=8,当BE=3时,判断△ADE的形状,说明理由.21.先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为﹐由于,,即:,,所以,问题:(1)填空:__________,____________﹔(2)进一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,,即,﹐那么便有:__________.(3)化简:(请写出化简过程)22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下:甲店:购买电脑打八折;乙店:先赠一台电脑,其余电脑打九折优惠.设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元).(1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式;(2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算?23.在中,,,将沿方向平移得到,,的对应点分别是、,连接交于点.(1)如图1,将直线绕点顺时针旋转,与、、分别相交于点、、,过点作交于点.①求证:≌②若,求的长;(2)如图2,将直线绕点逆时针旋转,与线段、分别交于点、,在旋转过程中,四边形的面积是否发生变化?若不变,求出四边形的面积,若变化,请说明理由;(3)在(2)的旋转过程中,能否为等腰三角形,若能,请直接写出的长,若不能,请说明理由.24.直线:交x轴于A,交y轴于B.(1)求的长;(2)如图1,直线关于y轴对称的直线交x轴于点C,直线:经过点C,点D、T分别在直线、上.若以A、B、D、T为顶点的四边形是平行四边形,求点D的坐标;(3)如图2,平行y轴的直线交x轴于点E,将直线向上平移5个单位长度后交x轴于M,交y轴于N,交直线于点P.点在四边形内部,直线交于G,直线交于H,求的值.25.如图1,四边形是正方形,点在边上任意一点(点不与点,点重合),点在的延长线上,.(1)求证:;(2)如图2,作点关于的对称点,连接、、,与交于点,与交于点.与交于点.①若,求的度数;②用等式表示线段,,之间的数量关系,并说明理由.【参考答案】一、选择题1.C解析:C【分析】根据二次根式的被开方数大于或等于0即可得出答案.【详解】解:∵代数式有意义,∴x-1≥0.∴x≥1.故选:C.【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数大于或等于0是解决本题的关键.2.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;B、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;C、92+122=152,符合勾股定理的逆定理,故本选项不符合题意;D、12+22=()2,符合勾股定理的逆定理,故本选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.A解析:A【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】解:A、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;D、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形;故选:A.【点睛】本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.4.A解析:A【解析】【分析】根据两组数据的平均数相同,则方差小的更稳定即可求解.【详解】甲,乙两块试验田3次果蔬平均产量都是,方差分别是,,这两块试验田3次果蔬产量较稳定的是:甲.故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.5.D解析:D【分析】根据勾股定理的逆定理求出,求出,根据菱形的判定求出四边形是菱形,根据菱形的性质求出,求出,再求出四边形的面积即可.【详解】解:,,,,是直角三角形,即,点是的中点,,,即,四边形是菱形,,,四边形的面积是,故选:D.【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出是解此题的关键,注意:①如果一个三角形的两边、的平方和等于第三边的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.D解析:D【解析】【分析】连接BF,根据菱形的性质得出△ADF≌△ABF,从而得到∠ABF=∠ADF,然后结合垂直平分线的性质推出∠ABF=∠BAC,即可得出结论.【详解】解:如图,连接BF,∵四边形ABCD是菱形,∠BAD=80°,∴AD=AB,∠DAC=∠BAC=∠BAD=40°,在△ADF和△ABF中,∴△ADF≌△ABF(SAS),∴∠ABF=∠ADF,∵AB的垂直平分线交对角线AC于点F,E为垂足,∴AF=BF,∴∠ABF=∠BAC=40°,∴∠DAF=∠ADF=40°,∴∠CFD=∠ADF+∠DAF=80°.故选:D.【点睛】本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键.7.B解析:B【解析】【分析】设交于点,连接,根据作图可得四边形是菱形,进而勾股定理求解即可.【详解】设交于点,连接,由作图可知,,,四边形是平行四边形,,,,∴AB=BE,,四边形是平行四边形,又,四边形是菱形,,,,,,在中,,,.故选B.【点睛】本题考查了角平分线作图,菱形的性质与判定,平行四边形的性质,等角对等边,勾股定理,理解题意证明四边形是菱形是解题的关键.8.B解析:B【解析】【分析】点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=-x+7,∴直线CC″的解析式为y=x-1,由解得,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴,解得:∴C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=故答案为10.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.二、填空题9.【解析】【分析】根据二次根式有意义的条件:被开方数大于或等于0列不等式即可求解.【详解】解:因为在实数范围内有意义,所以,解得:.故答案为:.【点睛】本题主要考查二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件.10.1【解析】【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.【详解】解:四边形为正方形,,,正方形的面积,故答案为:1.【点睛】本题考查正方形的性质,解题关键是掌握正方形的对角线相等且垂直,且当四边形的对角线互相垂直时面积等于对角线乘积的一半,比较容易解答.11.A解析:10【解析】【分析】先根据矩形面积公式求出AD的长,再根据勾股定理求出对角线BD即可.【详解】解:∵矩形ABCD的面积为48,一条边AB的长为6,∴AD=48÷6=8,∴对角线BD=,故答案为10.【点睛】本题主要考查了勾股定理的应用,解决此题的关键是根据矩形面积求出另一边的长.12.D解析:3【分析】由题意,直角三角形斜边上的中线等于斜边的一半,中位线等于的一半,相减即可求得【详解】点D,E分别是边AB,AC的中点,BC=16∠AFB=90°,且AB=10,点D是边AB的中点,故答案为:3【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,熟悉以上性质是解题的关键.13.【分析】根据函数的概念:函数中的每个值,变量按照一定的法则有一个确定的值与之对应,解答即可.【详解】解:设挂重为,则弹簧伸长为,挂重后弹簧长度与挂重之间的函数关系式是:.故答案为:.【点睛】本题考查了根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式.14.A解析:AC⊥BC或∠AOB=90°或AB=BC(填一个即可).【详解】试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.考点:菱形的判定.15.(2,2)【分析】先用待定系数法求得直线AB的解析式,再求得点C的坐标,由此可得正方形的边长,可求得点E和点D的坐标,再根据平移可得点E的对应点的纵坐标,进而求得点E的对应点的坐标,从而可求得答解析:(2,2)【分析】先用待定系数法求得直线AB的解析式,再求得点C的坐标,由此可得正方形的边长,可求得点E和点D的坐标,再根据平移可得点E的对应点的纵坐标,进而求得点E的对应点的坐标,从而可求得答案.【详解】解:设直线AB的解析式为y=kx+b,∵顶点A,B的坐标分别为(﹣2,6)和(7,0).∴,∴,∴y=﹣x+,∵∠ACB=90°,边BC在x轴上,∴C点的坐标为(﹣2,0),∴正方形OCDE的边长为2,∴E(0,2),D(﹣2,2),设点E沿x轴平移后落在AB边上的坐标为(a,2),则点D沿x轴平移后的对应点的坐标为(a﹣2,2),∵y=﹣x+,∴2=﹣a+,∴a=4,∴a﹣2=2,∴当点E落在AB边上时,点D的坐标为(2,2),故答案为:(2,2).【点睛】本题考查了待定系数法求函数关系式,正方形的性质,坐标与图形性质,根据向右平移可得对应点的纵坐标不变是解题的关键.16.45【分析】先根据矩形的性质得AB=CD=8,在RtΔABF

中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10

,则CF=BC−BF=4;设DE=x

,则EF=x解析:45【分析】先根据矩形的性质得AB=CD=8,在RtΔABF

中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10

,则CF=BC−BF=4;设DE=x

,则EF=x,EC=8−x,然后在

RtΔECF中根据勾股定理得到42+(8−x)2=x2

,再解方程即可得到DE的长.【详解】解:根据折叠可得AF=AD=10,∵四边形ABCD是矩形,∴BC=AD=10,在Rt△ABF中,AB2+FB2=AF2,∴FB=6.∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点睛】本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1),(2),(3),(4)【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C作CD⊥AB于D点,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC为直角三角形,∴,∴,∴,∵以台风中心为圆心周围250km以内为受影响区域,∴海港C会受到台风影响;(2)由(1)得CD=240km,如图所示,当EC=FC=250km时,即台风经过EF段时,正好影响到海港C,此时△ECF为等腰三角形,∵,∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)解析:(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD.(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可.【详解】解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC;(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD;(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等.【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键.20.(1)见解析;(2)直角三角形,理由见解析【分析】(1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可;(2)根据菱形的性质求出AO=2,BO=解析:(1)见解析;(2)直角三角形,理由见解析【分析】(1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可;(2)根据菱形的性质求出AO=2,BO=DO=4,求出OE和DE,根据勾股定理求出AD2=20,AE2=5,求出AD2+AE2=DE2,再根据勾股定理的逆定理求出答案即可.【详解】解:(1)证明:∵四边形ABCD是菱形,∴AC⊥BC,AO=CO,BO=DO,∵BE=DF,BO=DO,∴BO﹣BE=DO﹣DF,即OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵AC⊥BD,∴四边形AECF是菱形;(2)解:△ADE是直角三角形,理由是:∵AC=4,BD=8,AO=CO,BO=DO,∴AO=2,BO=DO=4,∵BE=3,∴OE=4﹣3=1,DE=DO+OE=4+1=5,在Rt△AOD中,由勾股定理得:AD2=AO2+DO2=22+42=20,在Rt△AOE中,由勾股定理得:AE2=AO2+OE2=22+12=5,∵DE2=52=25,∴AD2+AE2=DE2,∴∠DAE=90°,即△ADE是直角三角形.【点睛】本题考查了菱形的性质和判定,平行四边形的判定,勾股定理,勾股定理的逆定理等知识点,能熟记菱形的性质和判定是解此题的关键.21.(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4解析:(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4写成,就可以凑成完全平方的形式进行计算.【详解】解:(1);;(2);(3)==.【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算【分析】(1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元);(2)根据(1)的结论列方程或不等式解答即可.【详解】解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15);y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15);(2)当3840x=4320x﹣4320时,解得x=9,即当购买9台电脑时,到两家商店购买费用相同;当3840x<4320x﹣4320时,解得x>9,即当10≤x≤15时,到甲商店更合算;当3840x>4320x﹣4320时,解得x<9,即当6≤x≤8时,到乙商店更合算.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键.23.(1)①见解析;②2;(2)不变,12;(3)能,或6或【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC≌△HCE;②由①得IC=HE,再证明四边形ICHG是平行四边形,得I解析:(1)①见解析;②2;(2)不变,12;(3)能,或6或【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC≌△HCE;②由①得IC=HE,再证明四边形ICHG是平行四边形,得IC=GH,再证明△DFG≌△CFI,得DG=IC,于是得DG=GH=HE=DE=AC,可求出DG的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP≌△COQ,将四边形ABQP的面积转化为△ABC的面积,说明四边形ABQP的面积不变,求出△ABC的面积即可;(3)按OP=OA、PA=OA、OP=AP分类讨论,分别求出相应的PQ的长,其中,当PA=OA时,作OL⊥AP于点L,构造直角三角形,用面积等式列方程求OL的长,再用勾股定理求出OP的长即可.【详解】(1)证明:①如图1,∵是由平移得到的,∴,∴,∵,∴∴≌②如图1,由①可知:≌,∴,∵,,∴CIGH,CHGH,∴四边形是平行四边形,∴,∵,∴∵,,∴≌,∴,∴,∴.(2)面积不变;如图2:由平移可知,,∴四边形是平行四边形,∴,∵,∴,∵,∴≌,∴,,∴四边形ABQP的面积不变.∵,∴,∴,在中∴,∴,∴(3)如图3,OP=OA=3,由(2)得,△AOP≌△COQ,∴OQ=OP=3,∴PQ=3+3=6;如图4,PA=OA=3,作OL⊥AP于点L,则∠OLA=∠OLP=90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由AD•OL=OA•OD=得,×5OL=×3×4,解得,OL=,∴,∴,∴,∴PQ=2OP=;如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA=∠DAC=∠BAC,∴PQAB,∵APBQ,∴四边形ABQP是平行四边形,∴PQ=AB=5,综上所述,或6或.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.24.(1);(2)点D的坐标为或或;(3).【解析】【分析】(1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度;(2)根解析:(1);(2)点D的坐标为或或;(3).【解析】【分析】(1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度;(2)根据直线和直线关于y轴对称求出直线的解析式,再求出直线的解析式,根据点D在直线上,可设点,然后分类讨论点D是在线段BC上,还是在线段BC的延长线上,或者在线段CB的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m的式子表示点T的坐标,再根据点T在直线上求出m的值,即可求出点D的坐标;(3)根据平移的性质求出直线MN的解析式,再结合直线x=2求出点,点和点,进而求出ME的长度,然后再结合点求出直线和直线,进而求出点和,即可得到GE与HE的长度,最后再代入计算即可.【详解】解:(1)∵直线交x轴于A,交y轴于B,∴,.∴,.∴,.∴,.∴,.∵,∴.(2)∵直线关于y轴对称的直线交x轴于点C,直线交x轴与点,∴点A与点C关于y轴对称.∴.∵点在y轴上,∴直线经过点B.∴设直线.∵直线经过点,∴.解得:.∴直线.∵直线经过点,∴.解得:.∴直线.∵点D在直线上,∴设点.①如下图所示,当点D在线段上时.∵四边形ABDT是平行四边形,∴.∴BD经过平移之后到达AT.∴.∵点T在直线上,∴,解得.∴;②如下图所示,当点D在线段的延长线上时.∵四边形ABTD是平行四边形,∴.∴AD经过平移之后到达BT.∴.∵点T在直线上,∴,解得.∴;③如下图所示,当点D在线段的延长线上时.∵四边形ADBT是平行四边形,∴.∴BD经过平移之后到达TA.∴.∵点T在直线上,∴,解得.∴.综上所述,点D的坐标为或或.(3)直线向上平移5个单位长度得到的直线解析式为.∵直线x=2与x轴交于点E,与直线MN交于点P,直线MN交x轴于点M,∴,,.∴,.∴,.∴,.∴,设直线的解析式为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论