版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版七7年级下册数学期末质量监测题及解析一、选择题1.如图所示,下列四个选项中不正确的是()A.与是同旁内角 B.与是内错角C.与是对顶角 D.与是邻补角2.下列现象中是平移的是()A.翻开书中的每一页纸张 B.飞碟的快速转动C.将一张纸沿它的中线折叠 D.电梯的上下移动3.如图,小手盖住的点的坐标可能为()A. B. C. D.4.在以下三个命题中,正确的命题有()①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补A.② B.①② C.②③ D.①②③5.如图所示,,三角板如图放置,其中,若,则的度数是()A. B. C. D.6.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和17.如图,将木条,与钉在一起,,,要使木条与平行,木条顺时针旋转的度数至少是()A. B. C. D.8.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上平移1个单位至点P1(1,1),紧接着第2次向左平移2个单位至点P2(﹣1,1),第3次向上平移1个单位到达P3(﹣1,2),第4次向右平移3个单位到达P4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,…,依此规律平移下去,点P2021的坐标为()A.(506,1011) B.(506,﹣506)C.(﹣506,1011) D.(﹣506,506)九、填空题9.9的算术平方根是.十、填空题10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.十一、填空题11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点.如果∠A=α,那么∠BOC的度数为____________.十二、填空题12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度.十三、填空题13.把一张长方形纸条按如图所示折叠后,若,则_______;十四、填空题14.当时,我们把称为x为“和1负倒数”.如:1的“和1负倒数”为;-3的“和1负倒数”为.若,是的“和1负倒数”,是的“和1负倒数”…依次类推,则=______;…=_____.十五、填空题15.在平面直角坐标系中,点P的坐标为,则点P在第________象限.十六、填空题16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________.十七、解答题17.计算:(1)(2)十八、解答题18.求下列各式中的的值:(1);(2).十九、解答题19.完成下列证明:已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF∥AC交EG的延长线于点F.求证:∠E=∠F.证明:∵AD平分∠BAC(已知),∴∠1=∠2(),又∵∠ADC+∠EGD=180°(已知),∴EF∥(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3().∴∠E=(等量代换).又∵AC∥DF(已知),∴∠3=∠F().∴∠E=∠F(等量代换).二十、解答题20.在平面坐标系中描出下列各点且标该点字母:(1)点,,,;(2)点在轴上,位于原点右侧,距离原点2个单位长度;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度.二十一、解答题21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.二十二、解答题22.如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?二十三、解答题23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且.(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t.二十五、解答题25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A.与是同旁内角,故该选项正确,不符合题意;B.与不是内错角,故该选项不正确,符合题意;C.与是对顶角,故该选项正确,不符合题意;D.与是邻补角,故该选项正确,不符合题意;故选B.【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】∵盖住的点在第三象限,∴符合条件;故答案选C.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.4.A【分析】根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.【详解】解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误综上:正确的命题是②.故选A.【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.5.B【分析】作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.【详解】解:作BD∥l1,如图所示:∵BD∥l1,∠1=40°,∴∠1=∠ABD=40°,又∵l1∥l2,∴BD∥l2,∴∠CBD=∠2,又∵∠CBA=∠CBD+∠ABD=90°,∴∠CBD=50°,∴∠2=50°.故选:B.【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.B【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a旋转的度数.【详解】解:要使木条a与b平行,∴旋转后∠1+∠2=180°,∵∠2=50°,∴旋转后∠1=180°﹣50°=130°,∴当∠1需变为130º,∴木条a至少旋转:130º﹣110º=20º,故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.A【分析】通过观察前面几次点的坐标,找到规律,即可求解.【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(解析:A【分析】通过观察前面几次点的坐标,找到规律,即可求解.【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…,∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数).∵2021=505×4+1,∴P2021(505+1,505×2+1),即(506,1011).故选:A.【点睛】此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键.九、填空题9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.十、填空题10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:.【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.十一、填空题11.90°+【解析】∵∠ABC、∠ACB的角平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,解析:90°+【解析】∵∠ABC、∠ACB的角平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,∵在△OBC中,∠BOC=180°-∠OBC-∠OCB,∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+.十二、填空题12.【分析】根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.【详解】∵AB∥CD,∴∠CMF=∠解析:【分析】根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.【详解】∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°,∴∠EMD=180°-∠CME=66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题13.55°【分析】直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.【详解】解:∵∠AOB′=70°,解析:55°【分析】直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.【详解】解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°,∴∠BOG+∠B′OG=180°-70°=110°.∵∠B′OG由∠BOG翻折而成,∴∠BOG=∠B′OG,∴∠BOG==55°.∵AB∥CD,∴∠OGD=∠BOG=55°.故答案为:55°.【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开解析:【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开始每3个数为一周期循环,∵2021÷3=673…2,∴,,又·.==1,∴…==3,故答案为:;3.【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.十五、填空题15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)3;(2)2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1解析:(1)3;(2)2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1)原式=-(2-4)÷6+3=++3=3;(2)原式==.故答案为:(1)3;(2).【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键.十八、解答题18.(1);(2).【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,解析:(1);(2).【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,;(2),,,解得:.【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.十九、解答题19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论.【详解】证明:∵AD平分∠BAC(已知),∴∠1=∠2(角平分线的定义),又∵∠ADC+∠EGD=180°(已知),∴EF∥AD(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等).∴∠E=∠3(等量代换).又∵AC∥DF(已知),∴∠3=∠F(两直线平行,内错角相等).∴∠E=∠F(等量代换).故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.二十、解答题20.(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点的坐标,然后解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点的坐标,然后在平面直角坐标系内描出各点即可.【详解】解:(1)如图,(2)∵点在轴上,位于原点右侧,距离原点2个单位长度,∴点;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,∴点.【点睛】本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.二十一、解答题21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵7﹤﹤8,∴的整数部分是7,小数部分是-7.故答案为:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整数,且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:x=因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.二十三、解答题23.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式,求出t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式,求出t的值,进而求出的度数;(3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论.【详解】解:(1).又,.,;(2)设灯转动时间为秒,如图,作,而,,,,,,(3)设灯转动秒,两灯的光束互相平行.依题意得①当时,两河岸平行,所以两光线平行,所以所以,即:,解得;②当时,两光束平行,所以两河岸平行,所以所以,,解得;③当时,图大概如①所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024股份转让合同范本
- 2024就业协议和劳动合同有何区别
- 2024美容师聘用合同范本
- 2024解除劳动合同申请范本
- 2024个人借款合同范本「简单」
- 绿色节能班会
- 苏州科技大学天平学院《员工培训与开发》2021-2022学年第一学期期末试卷
- 苏州科技大学天平学院《外国文学一》2021-2022学年第一学期期末试卷
- 光学仪器在交通工程中的应用考核试卷
- 广告媒体与渠道管理考核试卷
- 2024年公路建设:泥浆外运及环保处理合同
- 江苏省苏州市吴中区2024-2025学年八年级上学期期中考试历史卷(含答案)
- 民间借贷利息计算表
- 2024江苏省铁路集团限公司春季招聘24人高频500题难、易错点模拟试题附带答案详解
- 沪科版(2024)八年级全一册物理第一学期期中学业质量测试卷 2套(含答案)
- Q GDW 10115-2022 110kV~1000kV架空输电线路施工及验收规范
- 2023《住院患者身体约束的护理》团体标准解读PPT
- 生活中的音乐教案
- 辩论赛评分表(完整版)-
- 电子商务支付与安全课程标准
- Program Management Operations Process(PMOP).ppt
评论
0/150
提交评论