




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市凤阳县2023-2024学年八年级下学期月考数学模拟试题说明:本试卷共8大题,计23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列方程中,是一元二次方程的是()A. B. C. D.2.下列各式中,一定是二次根式的是()A. B. C. D.3.与是同类二次根式的是()A. B. C. D.4.若将一元二次方程化成一般式为,则b-c的值为()A.2 B.-3 C.1 D.-15.下列计算中,正确的是()A. B. C. D.6.若x=-1是关于x的一元二次方程的一个根,则m的值为()A.-7 B.-5 C.5 D.77.下列二次根式中,是最简二次根式的是()A. B. C. D.8.用配方法解方程时,若将方程化为的形式,则m+n的值为()A.-1 B. C. D.19.已知关于x的一元二次方程的两个根分别为-2,3,则方程的两个根分别为()A.-2,3 B.-1,3 C.-3,2 D.-1,210.我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即若三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦—秦九韶公式.若三角形的面积,b=4,c=2,则a的值为()A.2或3 B.3或 C.5或4 D.4或二、填空题(本大题共4小题,每小题5分,满分20分)11.若二次根式有意义,则x的取值范围是______.12.计算:______.13.化简:______.14.若关于x的一元二次方程的两个实数根分别为().(1)若m=2,则______.(2)若,则m=______.三、(本大题共2小题,每小题8分,满分16分)15.计算:;16.解方程:.四、(本大题共2小题,每小题8分,满分16分)17.已知两个最简二次根式与是同类二次根式,求a的值.18.已知x=a是一元二次方程的一个根,求的值.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式.第1个等式:.第2个等式:.第3个等式:.……根据上述规律,解答下列问题:(1)第4个等式为______.(2)根据你的观察与猜想,写出第n个等式,并给予证明.20.我们已经知道,根据平方差公式可得,因为无理数与无理数的乘积为有理数,所以我们称无理数与无理数互为有理化因式.例如:,所以无理数与无理数互为有理化因式.(1)无理数的有理化因式是______.(2)计算.六、(本题满分12分)21.剪纸是一门古老的传统民间艺术,具有明显的地域特色和极高的艺术价值.为传承这一艺术,我市某中学举行剪纸艺术大赛,参赛作品要求面积在以上,下图是小悦同学的参赛作品(单位:dm).(1)通过计算判断小悦的作品是否符合参赛标准.(2)小涵给小悦提出建议:在参赛作品周围贴上金色彩条,这样作品更漂亮.则需要彩条的长度约为多少?(彩条的宽度忽略不计,结果保留一位小数,参考数据:)七、(本题满分12分)22.下面是一位同学的数学学习笔记.请仔细阅读,并完成下列相关问题.解方程:.这是一个一元四次方程,根据该方程的特点,它的解法如下.设,则,于是原方程可变为.解这个方程,得.当y=1时,,∴x=±1;当y=5时,,∴,∴原方程有四个根:.(1)已知,求的值.(2)解方程:.八、(本题满分14分)23.将代数式通过配方得到完全平方式,再运用完全平方式的非负性这一性质解决问题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有广泛的应用.如利用配方法求最小值,求的最小值.解:,因为不论a取何值,总是非负数,即,所以,所以当a=2时,有最小值-1.根据上述材料,解答下列问题.(1)求式子的最大值.(2)若,比较M,N的大小.(写出比较过程)(3)若等腰三角形的两边a,b满足,求这个三角形的周长.2023—2024学年度第二学期八年级综合素质评价(一)数学答案1.C2.B3.D4.A5.B6.A7.C8.B9.C10.D提示:∵,b=4,c=2,∴,∴.设,则(9-t)(t-1)=15,整理,得,解得.当t=4时,,∴a=4;当t=6时,,∴.故选D.11.x≥312.13.14.(1)(2分)(2)(3分)提示:∵,∴,解得.(1)当m=2时,,,∴.(2)∵,∴,解得.15.解:原式.16.解:∵,∴,∴(x-1)(x-3)=0,∴.17.解:根据题意,得,∴,∴(a-4)(a+1)=0,∴.当a=4时,,但不是最简二次根式,故不符合题意;当a=-1时,,2a+4=2>0,符合题意.∴a的值为-1.18.解:由题意,将x=a代入方程,得,∴,∴,∴的值为2.19.解:(1).(2)第n个等式为.证明:左边右边.∴.20.解:(1).(2)原式.21.解:(1).∵24>20,∴小悦的作品符合参赛标准.(2).答:需要彩条的长度约为19.6dm.22.解:(1)设.由题意,得y(y-1)=20,整理,得,解得.∵,∴.(2)设.由题意,得,整理,得,解得.经检验,y=1是分式方程的根,∴,即,解得.经检验,是分式方程的根,∴原分式方程的解为.23.解:(1).∵,∴,∴当a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道具存款测试题及答案
- 绿色发展面试题及答案
- 理想教育创新路径
- 教育机构教管主任竞聘演讲
- 儿童创意绘画莲蓬课件
- 刺豚创意绘画课件
- 原料库年终工作总结
- 中国移动公司员工培训大纲
- 组织实施培训的
- 折纸小兔子课件
- 《银行业金融机构安全评估标准》
- 企业内部培训体系搭建及实施效果评估报告
- 湖南省首届财会知识大赛竞赛考试网络答题题库
- 国家开放大学-传感器与测试技术实验报告-实验
- 经皮球囊压迫术治疗三叉神经痛中国专家共识(2022 版)
- 人工智能知到智慧树章节测试课后答案2024年秋复旦大学
- 胸痛中心数据填报培训
- 直臂式高空作业车安全管理
- 水毁道路修复工程项目可行性研究报告
- 教科版 六年级下册 科学 2023-2024 温州市小升初学业检测
- 抗旱设备采购合同范例
评论
0/150
提交评论