河北省沧州市沧县树行中学高一数学理摸底试卷含解析_第1页
河北省沧州市沧县树行中学高一数学理摸底试卷含解析_第2页
河北省沧州市沧县树行中学高一数学理摸底试卷含解析_第3页
河北省沧州市沧县树行中学高一数学理摸底试卷含解析_第4页
河北省沧州市沧县树行中学高一数学理摸底试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州市沧县树行中学高一数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.△ABC的三内角A,B,C所对边的长分别为a,b,c.设向量=(a+c,b),=(b﹣a,c﹣a),若向量∥,则角C的大小是()A.B. C.D.参考答案:B【考点】余弦定理;平行向量与共线向量.【分析】因为,根据向量平行定理可得(a+c)(c﹣a)=b(b﹣a),展开即得b2+a2﹣c2=ab,又根据余弦定理可得角C的值.【解答】解:∵∴(a+c)(c﹣a)=b(b﹣a)∴b2+a2﹣c2=ab2cosC=1∴C=故选B.2.若f(sinx)=3-cos2x,则f(cosx)=()A.3-cos2x B.3-sin2xC.3+cos2x D.3+sin2x参考答案:B略3.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为(

)A.x=3,y=-1

B.(3,-1)C.{3,-1} D.{(3,-1)}参考答案:D4.某产品的广告费用(万元)与销售额(万元)的统计数据如下表:x2345y26394954

已知数据对应的回归直线方程中的为9.4,据此模型预计广告费用为6万元时的销售额为(

)A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元参考答案:B【分析】根据表格中给的数据,广告费用x与销售额y的平均数,得到样本中心点,代入样本中心点求出a的值,写出线性回归方程,将x=6代入回归直线方程,得到y,可以预测广告费用为6时的销售额.【详解】由表格中的数据得:又回归方程:中的为9.4,故,,将x=6代入回归直线方程,得(万元)故选:B【点睛】本题考查了线性回归方程得求解及应用,考查了学生综合分析,数学运算的能力,属于基础题.5.设,则(

)(A)(B)(C)(D)参考答案:D6.一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是A.cm

B.

96cm

C.cm

D.

112cm参考答案:A略7.已知集合M={2,4,6},N={1,2},则M∪N=(

)A.{2,4,6,1,2} B.{1,2,4,6} C.{1,4,6} D.{2}参考答案:B【分析】根据并集的概念和运算,求得两个集合的并集.【详解】两个集合的并集是由两个集合所有的元素组合而成,故.故选B.【点睛】本小题主要考查两个集合并集的概念和运算,考查集合元素的互异性,属于基础题.8.如果,那么下列不等式成立的是(

)A. B.C. D.参考答案:D【分析】由于,不妨令,,代入各个选项检验,只有正确,从而得出结论.【详解】由于,不妨令,,可得,,故不正确.可得,,,故不正确.可得,,,故不正确.,故D正确.故选:.【点睛】本题主要考查不等式与不等关系,利用特殊值代入法比较几个式子在限定条件下的大小关系,是一种简单有效的方法,属于基础题.9.已知函数是奇函数,当时,,则当时,=A.

B.C.

D.参考答案:A10.(5分)已知函数f(x)=sin2x,则f(x+)是() A. 最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为的奇函数 D. 最小正周期为偶函数参考答案:B考点: 三角函数的周期性及其求法.专题: 三角函数的求值;三角函数的图像与性质.分析: 化简解析式f(x+)即可求出其周期和奇偶性.解答: 解:f(x+)=sin(2x+)=﹣cos2x是最小正周期为π的偶函数.故选:B.点评: 本题主要考查了三角函数的周期性及其求法,三角函数的奇偶性,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设函数f(x)=cos,则f(1)+f(2)+f(3)+…+f=.参考答案:【考点】余弦函数的图象.【分析】根据函数f(x)=cosx的最小正周期为T=6,利用其周期性即可求出结果.【解答】解:函数f(x)=cos的周期为T===6,且f(1)=cos=,f(2)=cos=﹣,f(3)=cosπ=﹣1,f(4)=cos=﹣,f(5)=cos=,f(6)=cos2π=1,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,∴f(1)+f(2)+f(3)+…+f(2015)+f(2016)+f+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=0+=.故答案为:.12.某学校甲、乙两个班各15名学生参加环保知识竞赛,成绩的茎叶图如下:则这30名学生的最高成绩是_______;由图中数据可得_______班的平均成绩较高.参考答案:96

乙【分析】最高成绩位的“茎”最大的“叶”上的最大数,再分析两个班的成绩主要集中在哪些“茎”上,比较这些“茎”的大小即可得出结果.【详解】由茎叶图可知,30名学生的最高成绩是96分,因为甲班的成绩集中在(60,80)分,乙班的成绩集中在(70,80)分,故乙班的平均成绩较高。【点睛】本题主要考查对茎叶图的理解.平均成绩决定于数据的集中区域与集中程度.13.函数y=log4(2x+3﹣x2)值域为__________.参考答案:(﹣∞,1]考点:对数函数的值域与最值;复合函数的单调性.专题:计算题;函数思想;配方法;函数的性质及应用.分析:运用复合函数的单调性分析函数最值,再通过配方求得值域.解答:解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y=log4x为(0,+∞)上的增函数,∴当u(x)取得最大值时,原函数取得最大值,即ymax=log4u(x)max=log44=1,因此,函数y=log4(2x+3﹣x2)的值域为(﹣∞,1],故填:(﹣∞,1].点评:本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题14.若函数,若,则实数的取值范围是___________.

参考答案:略15.函数的图象必经过的点是

。参考答案:(1,2)16.已知函数f(x)=,则函数y=f{f(x)}+1的零点个数为.参考答案:4个【考点】函数零点的判定定理.

【专题】函数的性质及应用.【分析】分别讨论当﹣1<x≤0时,x≤﹣1时,0<x<1时,x>1时的情况,求出相对应的表达式,从而求出函数的解的个数.【解答】解:当x≤0时,f(x)=x+1,当﹣1<x≤0时,f(x)=x+1>0y=f[f(x)]+1=log2(x+1)+1=0,x+1=,x=﹣.当x≤﹣1时,f(x)=x+1≤0,y=f[f(x)]+1=f(x)+1+1=x+3=0,∴x=﹣3.当x>0时,f(x)=log2x,y=f[f(x)]+1=log2[f(x)]+1,当0<x<1时,f(x)=log2x<0,y=f[f(x)]+1=log2[f(x)]+1=log2(log2x+1)+1=0,∴log2x+1=,x=;当x>1时,f(x)=log2x>0,∴y=f[f(x)]+1=log2(log2x)+1=0,∴log2x=,x=.综上所述,y=f[f(x)]+1的零点是x=﹣3,或x=﹣,或x=,或x=.故答案为:4.【点评】本题考查了函数的零点问题,考查复合函数的解析式的求解,考查分类讨论思想,是一道中档题.17.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.参考答案:n=120.设总体容量为n,则,所以n=120.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等比数列{an}的公比q>1,a2,a3是方程x2﹣6x+8=0的两根.(1)求数列{an}的通项公式;(2)求数列{2n?an}的前n项和Sn.参考答案:【考点】8E:数列的求和.【分析】(1)求出数列的公比,然后求解数列的通项公式.(2)化简数列的通项公式,利用错位相减法求和即可.【解答】解:(1)方程x2﹣6x+8=0的两根分别为2,4,依题意得a2=2,a3=4.所以q=2,所以数列{an}的通项公式为.(2)由(1)知,所以,①,②由①﹣②得,即,所以.【点评】本题考查等比数列通项公式的求法,数列求和的方法,考查计算能力.19.)已知向量=(cos,sin),=(cos,sin),||=.(1)求cos(-)的值;(2)若0<<,-<<0,且sin=-,求sin的值参考答案:解:(1)

(2)∵,

∵,∴

∵,∴

∴.略20.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,,.(1)求角A的大小;(2)求△ABC的面积.参考答案:(1);(2).试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.21.已知数列{an}是首项为正数的等差数列,a1?a2=3,a2?a3=15.(1)求数列{an}的通项公式;(2)设bn=(an+1)?2,求数列{bn}的前n项和Tn.参考答案:【考点】8E:数列的求和;8H:数列递推式.【分析】(1)设数列{an}的公差为d,由a1?a2=3,a2?a3=15.解得a1=1,d=2,即可得an=2n﹣1.(2)由(1)知bn=(an+1)?2=2n?22n﹣4=n?4n,利用错位相减法求和即可【解答】解:(1)设数列{an}的公差为d,因为a1?a2=3,a2?a3=15.解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论