版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南湾中学2024届中考数学模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.242.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm3.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是()A. B. C. D.4.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.845.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.6.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为()元.(精确到百亿位)A.2×1011B.2×1012C.2.0×1011D.2.0×10107.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.8.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110° B.115° C.120° D.130°9.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是()A.4 B.1 C.2 D.310.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A. B. C. D.11.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为()A.9 B.10 C.9或10 D.8或1012.a的倒数是3,则a的值是()A. B.﹣ C.3 D.﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.14.已知且,则=__________.15.=__________16.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.17.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.18.__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.20.(6分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.21.(6分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.22.(8分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=,请求出AC的长.23.(8分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.(1)求二次函数的表达式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.24.(10分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.25.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.26.(12分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.27.(12分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.2、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.3、B【解析】根据图示知,反比例函数的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.4、B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理全面积为:故该几何体的全面积等于1.故选B.5、A【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.6、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2000亿元=2.0×1.
故选:C.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、B【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,∵小长方形与原长方形相似,故选B.【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.8、A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.9、D【解析】
根据垂径定理,圆周角的性质定理即可作出判断.【详解】∵P是弦AB的中点,CD是过点P的直径.∴AB⊥CD,弧AD=弧BD,故①正确,③正确;∠AOB=2∠AOD=4∠ACD,故②正确.P是OD上的任意一点,因而④不一定正确.故正确的是:①②③.故选:D.【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.10、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.11、B【解析】
由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B12、A【解析】
根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、圆形【解析】
根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.【详解】围成的圆形场地的面积较大.理由如下:设正方形的边长为a,圆的半径为R,∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,∴R=,即所围成的圆的半径为,∴正方形的面积S1=a2=144,圆的面积S2=π×()2=,∵144<,∴围成的圆形场地的面积较大.故答案为:圆形.【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.14、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.15、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.16、(,0)【解析】试题解析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故答案为(,0).17、x(x﹣2)(x﹣1)2【解析】
先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.【详解】解:(x2−2x)2−(2x−x2)=(x2−2x)2+(x2−2x)=(x2−2x)(x2−2x+1)=x(x−2)(x−1)2故答案为x(x﹣2)(x﹣1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.18、.【解析】
根据去括号法则和合并同类二次根式法则计算即可.【详解】解:原式故答案为:【点睛】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10;(2);(3)9环【解析】
(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:,方差为:.(3)原来7次成绩为7899101010,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.20、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析【解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.【详解】(1)由抛物线的对称轴是,可设解析式为.把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为(2)∵点在抛物线上,位于第四象限,且坐标适合,∴y<0,即-y>0,-y表示点E到OA的距离.∵OA是的对角线,∴.因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的取值范围是1<<1.(3)①根据题意,当S=24时,即.化简,得解之,得故所求的点E有两个,分别为E1(3,-4),E2(4,-4).点E1(3,-4)满足OE=AE,所以是菱形;点E2(4,-4)不满足OE=AE,所以不是菱形.②当OA⊥EF,且OA=EF时,是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使为正方形.21、(1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.【解析】
(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣;把点B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函数的解析式为y=﹣x+2;(2)∵y=﹣x+2,令y=0,则x=4,∴C(4,0),即OC=4,∴△AOB的面积=×4×(3+1)=8;(3)∵反比例函数y=﹣的图象位于二、四象限,∴在每个象限内,y随x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴点M、N在第二象限,或点M、N在第四象限.【点睛】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.22、(1)证明见解析;(2)AC=4.【解析】
(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可.【详解】(1)连接.∵射线切于点,.,,,,,由圆周角定理得:,;(2)由(1)可知:,,,,,设的半径为,则,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.23、(1)y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.【解析】
(1)将代入,列方程组求出b、c的值即可;(2)连接PD,作轴交于点G,求出直线的解析式为,设,则,,,当时,S有最大值;(3)过点P作轴,设,则,,根据,列出关于x的方程,解之即可.【详解】解:(1)将、代入,,∴二次函数的表达式;(2)连接,作轴交于点,如图所示.在中,令y=0,得,∴直线AD的解析式为.设,则,,∴.,∴当时,S有最大值.(3)过点P作轴,设,则,,,即,当点P在y轴右侧时,,,或,(舍去)或(舍去),当点P在y轴左侧时,x<0,,或,(舍去),或(舍去),综上所述,存在点F,使与互余点P的横坐标为或或或.【点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.24、(Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).【解析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.(3)△COB沿x轴向右平移过程中,分两个阶段:①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;②当<t<3时,如答图3所示,此时重叠部分为一个三角形.【详解】解:(Ⅰ)∵点在抛物线上,∴,得∴抛物线解析式为:,令,得,∴;令,得或,∴.(Ⅱ)为直角三角形.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴为直角三角形.(Ⅲ)设直线的解析式为,∵,∴,解得,∴,直线是直线向右平移个单位得到,∴直线的解析式为:;设直线的解析式为,∵,∴,解得:,∴.连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,∴..(2)当时,如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关雎课件教学
- 高中正态分布课件
- 《秸秆反应堆技术》课件
- 儿童剪纸课件
- 普益标准-中国财富管理市场报告-2024
- 江苏省徐州市五年级-上学期数学期中试卷
- 《起重吊装施工安全》课件
- 招投标实施条例合同(2篇)
- 基本交易合同(2篇)
- 《传播正能量》课件
- 均苯四甲酸二酐生产技术教材(共70页).ppt
- 材料科学-相场模拟简介ppt课件
- 水利机械台班费用定额
- 托班一日生活情况反馈表
- 关于企业重组业务的税收政策解读与研究--企业特殊(免税)重组的条件
- ××35千伏输电线路施工方案
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 交通工程精细化施工质量控制及验收标准
- 乒乓球中的力学原理PPT课件
- 中央空调设备运行管理方案课案
- 预算单位财务服务平台-出纳管理操作手册
评论
0/150
提交评论