版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市大学附属中学高一数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等比数列{an}中,,若,则k=(
)A.11
B.9
C.7
D.12参考答案:C由题得,∴∴,∵,∴,∴k-2=5,∴k=7.
2.从1,2,3,4,5,6这6个数中,不放回地任取两数,两数都是偶数的概率是()A. B. C. D.参考答案:D【考点】C7:等可能事件的概率.【分析】根据已知中从1,2,3,4,5,6这6个数中,不放回地任意取两个数,由C62种结果,及列举出满足条件两个数都是偶数的基本事件个数,代入概率公式,即可得到答案.【解答】解:从1,2,3,4,5,6这6个数中,不放回地任意取两个数,共有C62=15种结果,其中满足条件两个数都是偶数的有(2,4),(2,6),(4,6)共3种情况不放回地任意取两个数,两个数都是奇数的概率P==故选D.3..已知向量,,且,则实数的值为(
)A. B. C. D.-1参考答案:C【分析】,即通过坐标运算公式:,代入数据即可求出值【详解】,且即故选:C【点睛】此题考查向量的坐标运算,,代入计算即可,属于基础题目。4.如图,在矩形ABCD中,E为AB的中点,将沿DE翻折到的位置,平面ABCD,M为A1C的中点,则在翻折过程中,下列结论正确的是(
)A.恒有平面B.B与M两点间距离恒为定值C.三棱锥的体积的最大值为D.存在某个位置,使得平面⊥平面参考答案:ABC【分析】对每一个选项逐一分析研究得解.【详解】取的中点,连结,,可得四边形是平行四边形,所以,所以平面,故A正确;(也可以延长交于,可证明,从而证明平面)因为,,,根据余弦定理得,得,因为,故,故B正确;因为为的中点,所以三棱锥的体积是三棱锥的体积的两倍,故三棱锥的体积,其中表示到底面的距离,当平面平面时,达到最大值,此时取到最大值,所以三棱锥体积的最大值为,故C正确;考察D选项,假设平面平面,平面平面,,故平面,所以,则在中,,,所以.又因为,,所以,故,,三点共线,所以,得平面,与题干条件平面矛盾,故D不正确;故选:A,B,C.【点睛】本题主要考查空间几何元素位置关系的证明,考查空间两点间的距离的求法和体积的最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.5.设是偶函数,且在上是减函数,又,则的解集是(A)
(B)(C)
(D)参考答案:C略6.与函数y=x相等的函数是()A.y=()2 B.y= C.y= D.y=参考答案:B【考点】判断两个函数是否为同一函数.【分析】本题可以通过函数的定义域、解析式、值域是否相同来判断函数是否为同一个函数,得到本题结论.【解答】解:选项A中,x≥0,与函数y=x的定义域R不符;选项B中,,符合题意;选项C中,y≥0,与函数y=x的值域R不符;选项D中,x≠0,与函数y=x的定义域R不符;故选B.7.已知如图是函数y=2sin(ωx+φ)(|φ|<)图像上的一段,则()
(A)ω=,φ=
(B)ω=,φ=-(C)ω=2,φ=
(D)ω=2,φ=-参考答案:C8.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.10参考答案:C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由题意和最小值易得k的值,进而可得最大值.【解答】解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值ymin=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值ymax=3+5=8,故选:C.【点评】本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.9.数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(–2)+1=8.现将实数对(–2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是(
)A.8
B.55
C.66
D.无法确定参考答案:B10.已知,,,(e为自然对数的底数),则(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.计算=
.参考答案:2【考点】GI:三角函数的化简求值.【分析】根据特殊三角函数的值计算即可.【解答】解:sin=,cos60°=.tan=1,∴=2.故答案为:2.12.锐角△ABC的三边a,b,c和面积S满足条件,且角C既不是△ABC的最大角也不是△ABC的最小角,则实数k的取值范围是________.参考答案:【分析】根据余弦定理和面积公式可得,得,结合范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,则,,,故荅案为.【点睛】本题主要考查余弦定理和三角形面积公式的应用,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.13.已知定义在上的奇函数,当时,,那么,____________.参考答案:略14.如果定义在的函数是偶函数,则
.参考答案:5如果定义在上的函数是偶函数,而具有奇偶性的函数的定义域必然关于原点对称,
故有,解得又函数是偶函数,则由可得故.
15.若方程|x2–4x+3|–x=a有三个不相等的实数根,则a=
。参考答案:–1或–16.在△ABC中,角A,B,C的对边分别为a,b,c.已知,,,则角B的大小为__________.参考答案:或【分析】根据正弦定理,求出sinB,进而求出B的大小.【详解】∵,,,由正弦定理,可得,可得,又,所以或,故答案为或.【点睛】本题考查了正弦定理的直接应用,属于简单题.
17.已知函数f(x)=,那么f(log34)的值为.参考答案:4【考点】函数的值.【分析】根据分段函数函数的不等式进行求解即可.【解答】解:∵log34>0,∴f(log34)=,故答案为:4【点评】本题主要考查函数值的计算,根据指数恒等式是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知:定义在R上的函数f(x),对于任意实数a,b都满足f(a+b)=f(a)f(b),且f(1)≠0,当x>0时,f(x)>1.(Ⅰ)求f(0)的值;(Ⅱ)证明f(x)在(﹣∞,+∞)上是增函数;(Ⅲ)求不等式f(x2+x)<的解集.参考答案:【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】(Ⅰ)令a=1,b=0,得出f(1)=f(1)?f(0),再结合当x>0时,f(x)>1.得出f(0)=1(Ⅱ)设x1<x2,由已知得出f(x2)=f(x1+(x2﹣x1))=f(x1)f(x2﹣x1)>f(x1),即可判断出函数f(x)在R上单调递增.(Ⅲ)由(Ⅱ),不等式化为x2+x<﹣2x+4,解不等式即可.【解答】解:(Ⅰ)令a=1,b=0则f(1)=f(1+0)=f(1)f(0),∵f(1)≠0,∴f(0)=1,(Ⅱ)证明:当x<0时﹣x>0由f(x)f(﹣x)=f(x﹣x)=f(0)=1,f(﹣x)>0得f(x)>0,∴对于任意实数x,f(x)>0,设x1<x2则x2﹣x1>0,f(x2﹣x1)>1,∵f(x2)=f(x1+(x2﹣x1))=f(x1)f(x2﹣x1)>f(x1),∴函数y=f(x)在(﹣∞,+∞)上是增函数.(Ⅲ)∵∴,由(Ⅱ)可得:x2+x<﹣2x+4解得﹣4<x<1,所以原不等式的解集是(﹣4,1).【点评】本题考查抽象函数求函数值、单调性的判定、及单调性的应用,考查转化、牢牢把握所给的关系式,对式子中的字母准确灵活的赋值,变形构造是解决抽象函数问题常用的思路.19.(12分)某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).参考答案:由三视图可知:该几何体的下半部分是棱长为2m的正方体,上半部分是半径为1m的半球.(1)几何体的表面积为20.已知集合(1)若,求,;(2)若,求实数的取值范围。
参考答案:解:(1)若则
又
ks5u
(2)
解得
所以的取值范围为略21.12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电容触摸屏TP简介》课件
- 冠状动脉闭塞病变介入治疗
- 中心供氧的应急预案
- 《光伏电池板与系统》课件
- 因式分解活动课
- 《通货膨胀和失业》课件
- 数学学案:课堂导学集合的运算第课时补集
- 《生物公司运营分析》课件
- 混泥土搅拌车咕噜咕噜
- 六年级上册英语重难点复习学案基础练语音练拓展练-Unit8ChineseNewYear译林三起含答案
- 2024年中国船级社认证公司招聘笔试参考题库含答案解析
- 绘本《罗伯生气了》
- 人教版2023-2024学年五年级数学上册常考易考突围第三单元小数除法·应用提高篇【九大考点】(原卷版)
- Windows Server 网络管理课件第06章 WINS服务器
- GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定气相色谱法
- 2023年7月辽宁省普通高中学业水平合格性考试语文试卷(含答案)
- 多变的天气-说课
- 幼儿园大班音乐《建筑之歌》
- 营养指导员理论考试题库及答案
- 2023国有企业统战工作调研报告
- 酒店住宿水单模板1
评论
0/150
提交评论