![2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷含解析_第1页](http://file4.renrendoc.com/view14/M03/02/05/wKhkGWY2FFKAVqgeAAGfSGWno_A513.jpg)
![2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷含解析_第2页](http://file4.renrendoc.com/view14/M03/02/05/wKhkGWY2FFKAVqgeAAGfSGWno_A5132.jpg)
![2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷含解析_第3页](http://file4.renrendoc.com/view14/M03/02/05/wKhkGWY2FFKAVqgeAAGfSGWno_A5133.jpg)
![2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷含解析_第4页](http://file4.renrendoc.com/view14/M03/02/05/wKhkGWY2FFKAVqgeAAGfSGWno_A5134.jpg)
![2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷含解析_第5页](http://file4.renrendoc.com/view14/M03/02/05/wKhkGWY2FFKAVqgeAAGfSGWno_A5135.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省广州市市桥象圣中学初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.62.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.52 B.32 C.53.在下列各平面图形中,是圆锥的表面展开图的是()A. B. C. D.4.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E5.将一把直尺与一块三角板如图所示放置,若则∠2的度数为()A.50° B.110° C.130° D.150°6.在函数y=中,自变量x的取值范围是()A.x≥0 B.x≤0 C.x=0 D.任意实数7.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.198.计算:的结果是()A. B.. C. D.9.如图,从圆外一点引圆的两条切线,,切点分别为,,如果,,那么弦AB的长是()A. B. C. D.10.下列解方程去分母正确的是()A.由x3B.由x-22C.由y3D.由y+12二、填空题(共7小题,每小题3分,满分21分)11.若y=,则x+y=.12.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.13.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.14.计算:的结果是_____.15.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.16.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.17.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(共7小题,满分69分)18.(10分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.19.(5分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
(2)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)20.(8分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知:,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为(点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.21.(10分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.22.(10分)的除以20与18的差,商是多少?23.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.24.(14分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.2、A【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB⋅ACAD=4∴⊙O的直径等于52故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.3、C【解析】
结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.4、C【解析】
根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.5、C【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.6、C【解析】
当函数表达式是二次根式时,被开方数为非负数.据此可得.【详解】解:根据题意知,
解得:x=0,
故选:C.【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.8、B【解析】
根据分式的运算法则即可求出答案.【详解】解:原式===故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.9、C【解析】
先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.【详解】解:,PB为的切线,,,为等边三角形,.故选C.【点睛】本题考查切线长定理,掌握切线长定理是解题的关键.10、D【解析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考点:二次根式有意义的条件.12、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.13、【解析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【详解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,考点:二次根式的加减15、17【解析】
根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,∴.【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.16、【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.17、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是1.解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,则m=12×1﹣10=2.故答案为2.考点:规律型:数字的变化类.三、解答题(共7小题,满分69分)18、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴抛物线的表达式为y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直线BD的表达式为y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴点F的坐标为(﹣+3,﹣2).∴m=FG=﹣3.②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,∵﹣<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴点F的坐标为(﹣3,).综上所述,点F的坐标为(﹣3,0)或(﹣3,).【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.19、(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【解析】
(1)根据众数、中位数的定义求解即可;
(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
故答案为8,6和9;
(2)甲的平均数是:(7+8+8+8+9)÷5=8,
则甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均数是:(6+6+9+9+10)÷5=8,
则甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成绩比较稳定;
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.20、(1);(2);(3)或【解析】
(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:,求出,利用,即可求解.【详解】(1)如图,连接∵与半圆相切,∴,∴,在矩形中,,∵,根据勾股定理,得在和中,∴∴(2)如图,当点与点重合时,过点作与点,则∵且,由(1)知:∴,∴,∴当与半圆相切时,由(1)知:,∴(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,则PG=GH,,则,设:PG=GH=m,则:,,整理得:25m2-640m+1216=0,解得:,.【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.21、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.
(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣2);劣弧MA的长为:;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣2);劣弧MA的长为:;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,2);优弧MA的长为:;④当C、M重合时,C点符合M点的要求,此时M4(2,2);优弧MA的长为:;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.22、【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.【详解】解:×÷(20﹣18)【点睛】考查有理数的混合运算,列出式子是解题的关键.23、(1)24.2米(2)超速,理由见解析【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府机构政务服务平台建设及优化方案设计
- 法院的离婚协议书
- 房地产中介服务合同中介住房合同
- 安装工程劳动合同
- 连带责任保证担保合同
- 交通物流业货物追踪系统建设方案
- 购买公司股份协议书十
- 2025年郑州货运从业资格证模拟考试0题及答案
- 小学六年级数学口算题全集
- 2025年湘潭货运资格证题库在线练习
- 2024-2025学年八年级数学人教版上册寒假作业(综合复习能力提升篇)(含答案)
- 部编人教版二年级下册语文 愿望的实现 教学课件
- 初中化学校本课程
- 科技文献检索
- GB/T 18665-2008地理标志产品蒙山茶
- GB/T 17614.1-2015工业过程控制系统用变送器第1部分:性能评定方法
- 元代文学绪论
- 隐匿性阴茎的诊疗和治疗课件
- 2022届北京市东城区高三语文一模语文试卷讲评课件
- 了不起的狐狸爸爸-全文打印
- 03fusionsphere虚拟化场景概要设计模板hld
评论
0/150
提交评论