版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省清远市阳山大崀中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-
B.C.
D.参考答案:C2.设向量a,b满足|a|=|b|=1,a·b=-,则|a+2b|=()A.
B.C.
D.参考答案:B3.设不等式组表示的平面区域为D,在区域D内随机取一点,则此点到坐标原点的距离大于1的概率为(
)A.
B.
C.
D.参考答案:D4.已知x与y之间的关系如下表X135y4815则y与x的线性回归方程为y=bx+a必经过点(
)A.(3,9) B.(3,7)
C.(3.5,8) D.(4,9)参考答案:A5.展开式中不含的项的系数绝对值的和为,不含的项的系数绝对值的和为,则的值可能为(
)
A.
B.
C.
D..
参考答案:D略6.已知,函数在上是单调增函数,则的最大值是()A.0
B.1
C.2
D.3参考答案:D7.椭圆上任意一点到两焦点的距离分别为d1,d2,焦距为2c,若d1,2c,d2成等差数列,则椭圆的离心率为()A.
B.
C.
D.参考答案:A略8.为激发学生学习兴趣,老师上课时在黑板上写出三个集合:A={x|}<0,B={x|x2﹣3x﹣4≤0},C={x|logx>2};然后请甲、乙、丙三位同学到讲台上,并将“[]”中的数告诉了他们,要求他们各用一句话来描述,以便同学们能确定该数,以下是甲、乙、丙三位同学的描述,甲:此数为小于6的正整数;乙:A是B成立的充分不必要条件;丙:A是C成立的必要不充分条件.若三位同学说的都对,则符合条件的“[]”中的数的个数有()A.1个 B.2个 C.3个 D.4个参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】先求出两个集合B,C,再根据三位同学的描述确定集合A与两个集合B,C之间的关系,推测出[]的可能取值【解答】解:由题意B={x|x2﹣3x﹣4≤0}={x|﹣1≤x≤4},C={x|logx>2}={x|}{x|0<x<},A={x|}<0}={x|0<x<},由A是B成立的充分不必要条件知,A真包含于B,故≤4,再由此数为小于6的正整数得出[]≥由A是C成立的必要不充分条件得出C包含于A,故>,得出[]<4,所以[]=1,2,3.故选:C9.某市A、B、C三个区共有高中学生20000人,其中A区高中学生7000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行学习兴趣调查,则A区应抽取()
A.200人
B.205人
C.210人
D.215人参考答案:C10.已知a=21.2,b=()-0.9,c=2log52,则a,b,c的大小关系为A.c<b<a
B.c<a<b
C.b<a<c
D.b<c<a参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若椭圆的弦被点(4,2)平分,则此弦所在直线的斜率为________.参考答案:12.抛物线形拱桥,当水面离拱顶2米时,水面宽4米,若水面下降1米后,则水面宽是
米参考答案:13.已知二次函数,若是偶函数,则实数的值为__________.参考答案:为偶函数,有,.14.已知(﹣)n展开式中所有项的二项式系数和为32,则其展开式中的常数项为.参考答案:﹣80【考点】DB:二项式系数的性质.【分析】由条件求得n=5,在展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式中的常数项.【解答】解:由题意可得2n=32,∴n=5,∴(﹣)n=(﹣)5展开式的通项公式为Tr+1=?(﹣2)r?.令=0,求得r=3,∴展开式中的常数项为?(﹣2)3=﹣80,故答案为:﹣80.15.焦点在直线上的抛物线标准方程为
.参考答案:16.描述算法的方法通常有:(1)自然语言;(2)
;(3)伪代码.参考答案:流程图17.圆截直线所得的弦长为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高。参考答案:19.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/kg)与上市时间t(单位:天)的数据如下表:时间t50110250种植成本Q150108150
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系,并说明选取该函数的理由.,,,
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.参考答案:解:(1)由提供得数据知道,描述西红柿种植成本Q与上市时间t的变化关系得函数不可能是常数函数,而选取函数,,时总有,而此时上述三个函数均为单调函数,这与表格提供得数据不吻合,所以,选取二次函数进行描述。
(5分)(2)将表格所提供的三组数据分别代入得到
(10分)
所以当天时,西红柿种植成本最低为100元/kg。
(13分)略20.在正方体中,棱长为,,分别为和上的点,.(1)
求证:平面;(2)
求的长.参考答案:解析:(1)作,,分别交,于,,连接.由作图可知.,.由得.同理可得,平行且等于.是平行四边形,,平面.平面.(2)由(1)可知,,.又,.21.轮船A从某港口O将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以30海里/小时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以V海里/小时的航速匀速行驶,经过t小时与轮船B相遇.(1)若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?(2)假设轮船A的最高航行速度只能达到30海里/小时,则轮船A以多大速度及什么航行方向才能在最短时间与轮船B相遇,并说明理由.参考答案:【考点】HU:解三角形的实际应用.【分析】(1)设两轮船在Q处相遇,在△POQ中,利用余弦定理得出OQ关于t的函数,从而得出OQ的最小值及其对应的t,得出速度;(2)利用余弦定理计算航行时间t,得出PQ,OQ距离,从而得出∠POQ的度数,得出航行方案.【解答】解:(1)设AB两船在Q处相遇,在△OPQ中,OP=20,PQ=30t,OQ=Vt,∠OPQ=60°,由余弦定理可得Vt==,∴当t=时,Vt取得最小值10,此时V==30.即轮船A以30海里/小时的速度航行,相遇时小艇的航行距离最小.(2)在△POQ中,OQ=30t,由余弦定理得:OQ2=PQ2+OP2﹣2×PQ×OPcos∠OPQ,即(30t)2=400+900t2﹣1200tcos60°∴600t=400解得:t=,∴PQ=OQ=20,∴△OPQ为等边三角形,∴∠POQ=30°.故航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.22.在四棱锥中,侧面底面,,底面是直角梯形,,=90°,,.(1)求证:平面;(2)设为侧棱上一点,,试确定的值,使得二面角的大小为45°.参考答案:解:(1)平面PCD⊥底面ABCD,PD⊥CD,所以PD⊥平面ABCD,所以PD⊥AD.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《IBMPC微型计算机》课件
- 《渐进镜片销售培训》课件
- 2024年新高一数学初升高衔接《指数函数及其性质》含答案解析
- 教学培训课件
- 水上运载工具市场发展现状调查及供需格局分析预测报告
- 【语文课件】怎样写板报稿
- 空间冷却装置产业运行及前景预测报告
- 存储器板市场洞察报告
- 初中英语课件下载
- 《统计学作业题目》课件
- 动物的遗传改良与繁殖
- 宝宝肌张力高演示课件
- 我来比划你来猜100题
- 正畸教学查房
- “能救命的AED”了解它吗?学生主题班会课件
- 无人机低空遥感网服务平台建设需求
- JGT161-2016 无粘结预应力钢绞线
- MES项目启动会模板
- 输血与血型的教学设计
- 山东省公路工程全表格
- 中学生心理辅导案例分析4篇
评论
0/150
提交评论