




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市石牌高级中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆心在抛物线上,且与该抛物线的准线和轴都相切的圆的方程是(
)ks5uA.
B.C.
D.ks5u参考答案:B2.同时满足以下4个条件的集合记作:(1)所有元素都是正整数;(2)最小元素为1;(3)最大元素为2014;(4)各个元素可以从小到大排成一个公差为的等差数列.那么中元素的个数是A.96
B.94
C.92 D.90参考答案:B3.设a大于0,b大于0.A.若2a+2a=2b+3b,则a>b
B.若2a+2a=2b+3b,则a>bC.若2a-2a=2b-3b,则a>b
D.若2a-2a=ab-3b,则a<b
参考答案:A
若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.故选A4.函数的零点是(
)
A.
B.和
C.1
D.1和参考答案:D略5.一个几何体的三视图如图所示,则该几何体的体积为() A. B. 10 C. 30 D. 24+2参考答案:B略6.已知为等比数列,,,则(
)
A.
B.
C.
D.参考答案:D在等比数列中,,所以公比,又,解得或。由,解得,此时。由,解得,此时,综上,选D.7.在中,,则以为焦点且过点的双曲线的离心率为
(A)
(B)
(C)
(D)参考答案:B由题知,,设,由余弦定理,由双曲线的定义有,,,故选B8.已知x,y满足约束条件,则z=﹣2x+y的最大值是(
)A.﹣1 B.﹣2 C.﹣5 D.1参考答案:A【考点】简单线性规划.【专题】不等式的解法及应用.【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.【点评】本题考查了简单线性规划,画出平面区域,分析目标函数取最值时与平面区域的关系是关键.9.双曲线x2﹣=1的离心率为()A. B. C. D.参考答案:D【考点】双曲线的简单性质.【分析】直接利用双曲线方程,求出实轴长以及焦距的长,即可得到双曲线的离心率.【解答】解:双曲线x2﹣=1的实轴长为:2,焦距的长为:2=2,双曲线的离心率为:e===.故选:D.10.下列四个函数中,在区间(0,1)上是减函数的是(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知等差数列满足,则其前11项之和=__________.参考答案:66
略12.已知=(3,4),?=﹣3,则向量在向量的方向上的投影是.参考答案:﹣【考点】平面向量数量积的运算.【分析】根据平面向量投影的定义,利用数量积与模长计算即可.【解答】解:=(3,4),?=﹣3,∴||==5,∴向量在向量的方向上的投影是||cos<,>=||×==﹣.故答案为:﹣.13.(几何证明选做题)如图,过圆外一点分别作圆的切线和割线,且=9,是圆上一点使得=4,∠=∠,则=
.
参考答案:略14.i为虚数单位,设复数z满足,则z的虚部是____参考答案:分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.15.函数f(x)=1﹣3sin2x的最小正周期为
.参考答案:π【考点】三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.16.已知正四面体ABCD中,M是棱AD的中点,O是点A在平面BCD上的射影,则异面直线BM与OA所成角的余弦值为_______.参考答案:【分析】设点在平面上的射影为,得、、三点共线,且是的中点,得异面直线与所成角等于异面直线与所成角,即.在中求解即可【详解】设点在平面上的射影为,则、、三点共线,且是的中点,则异面直线与所成角等于异面直线与所成角,即.设正四面体的棱长为2,则,,,所以中,.故答案为【点睛】本题考查异面直线所成的角及正四面体的基本性质,准确计算是解题关键,是基础题17.已知等差数列的前项和为,且,,则=
参考答案:84三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
某出版社新出版一本高考复习用书,该书的成本为元一本,经销过程中每本书需
付给代理商元的劳务费,经出版社研究决定,新书投放市场后定价为
元一本,,预计一年的销售量为万本.(Ⅰ)求该出版社一年的利润(万元)与每本书的定价的函数关系式;(Ⅱ)若时,当每本书的定价为多少元时,该出版社一年利润最大,并求出
的最大值.参考答案:略19.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.参考答案:解设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,所以函数g(x)的图像开口向上且与x轴没有交点,故Δ=4a2-16<0,∴-2<a<2.又∵函数f(x)=(3-2a)x是增函数,∴3-2a>1,∴a<1.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则∴1≤a<2;(2)若p假q真,则∴a≤-2.综上可知,所求实数a的取值范围为1≤a<2,或a≤-2.20.(本题满分15分)如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.[答案见P362]
参考答案:略21.[选修4-5:不等式选讲](共1小题,满分0分)已知函数f(x)=|x﹣2|+|2x+a|,a∈R.(Ⅰ)当a=1时,解不等式f(x)≥5;(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.参考答案:见解析【考点】分段函数的应用;绝对值不等式的解法.【分析】(Ⅰ)当a=1时,根据绝对值不等式的解法即可解不等式f(x)≥5;(Ⅱ)求出f(x)+|x﹣2|的最小值,根据不等式的关系转化为(f(x)+|x﹣2|)min<3即可求a的取值范围.【解答】解:(Ⅰ)当a=1时,f(x)=|x﹣2|+|2x+1|,.由f(x)≥5得x﹣2|+|2x+1|≥5.当x≥2时,不等式等价于x﹣2+2x+1≥5,解得x≥2,所以x≥2;
…当﹣<x<2时,不等式等价于2﹣x+2x+1≥5,即x≥2,所以此时不等式无解;…当x≤﹣时,不等式等价于2﹣x﹣2x﹣1≥5,解得x≤﹣,所以x≤﹣.…所以原不等式的解集为(﹣∞,﹣]∪[2,+∞).…(Ⅱ)f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|…因为原命题等价于(f(x)+|x﹣2|)min<3,…所以|a+4|<3,所以﹣7<a<﹣1为所求实数a的取值范围.…22.某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为,据此制作的频率分布直方图如图所示.(1)求出直方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邻里火灾纠纷协议书
- 非自愿签婚内协议书
- 装修安全保证协议书
- 销售车辆合同协议书
- 首付付款比例协议书
- 餐厨垃圾合同协议书
- 苗圃现金收购协议书
- 转让药厂设备协议书
- 加入俱乐部合同协议书
- 协会副会长合同协议书
- 2025-2030年中国腰果酚市场竞争格局及发展前景研究报告
- 智能制造对融资租赁行业影响-全面剖析
- 2025年新高考语文【语言运用新题型】考前训练试卷附答案解析
- GB 29743.2-2025机动车冷却液第2部分:电动汽车冷却液
- 安全人机工程学-人因事故分析与预防报告课件
- 生物有机肥试验方案
- 2025年小升初语文《分析人物形象》教学讲义及专项练习题(附答案)
- 超星尔雅学习通《中华文化才艺(中国海洋大学)》2025章节测试附答案
- 大数据与人工智能在财务管理中的深度应用研究
- 《AI技术术语解析》课件
- 康姿百德入职培训
评论
0/150
提交评论