版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古准格尔旗重点达标名校中考数学仿真试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元2.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.103.函数与在同一坐标系中的大致图象是()A、B、C、D、4.已知二次函数(为常数),当时,函数的最小值为5,则的值为()A.-1或5 B.-1或3 C.1或5 D.1或35.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是()A.M B.N C.P D.Q6.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1047.有一个数用科学记数法表示为5.2×105,则这个数是()A.520000 B. C.52000 D.52000008.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是()A.③④ B.②③ C.①④ D.①②③9.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A. B. C. D.10.已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.11.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD12.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)14.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.15.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.16.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.17.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.18.如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2﹣1+|﹣|++2cos30°20.(6分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.21.(6分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.23.(8分)先化简,再求值:,其中,.24.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)25.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.26.(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?27.(12分)计算:|﹣1|﹣2sin45°+﹣
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
可以用排除法求解.【详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【点睛】牢记科学记数法的规则是解决这一类题的关键.2、D【解析】
根据有理数乘法法则计算.【详解】﹣2×(﹣5)=+(2×5)=10.故选D.【点睛】考查了有理数的乘法法则,(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0;(3)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4)几个数相乘,有一个因数为0时,积为0.3、D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.4、A【解析】
由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y取得最小值5;②若h>3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【详解】解:∵x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1,当时,y随x的增大而增大,∴当x=1时,y取得最小值5,可得:,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h的值为−1或5,故选:A.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.5、A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.6、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】5.2×105=520000,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.9、B【解析】
由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.故选B.【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.10、C【解析】
根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.
∵b<a<0,∴a+b<0,故本选项错误;B.
∵b<a<0,∴ab>0,故本选项错误;C.
∵b<a<0,∴a>b,故本选项正确;D.
∵b<a<0,∴b−a<0,故本选项错误.故选C.11、D【解析】
∵∠ACD对的弧是,对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.12、C【解析】
求得不等式组的解集为x<﹣1,所以C是正确的.【详解】解:不等式组的解集为x<﹣1.故选C.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、BE=DF【解析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.14、1:1.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考点:相似三角形的性质.15、4π【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.16、1或2【解析】
先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解.【详解】根据题意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰长时,三角形的三边分别为5、5、7,三角形的周长为1.②5是底边时,三角形的三边分别为5、7、7,能组成三角形,5+7+7=2;所以,三角形的周长为:1或2;故答案为1或2.【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.17、k>2【解析】
根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18、【解析】
根据,只要求出、即可解决问题;【详解】∵四边形是平行四边形,,,,,,,,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、+4.【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.【详解】原式=++2+2×=+4.【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.20、⊙O的半径为.【解析】
如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.【解析】试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.22、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,,,,,,,,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,∴在规划2中,(小黄赢).∵,∴小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.23、1【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式
当x=-1、y=2时,
原式=-(-1)2+2×22
=-1+8
=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.24、2.1.【解析】
据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.25、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年健康医疗服务合作协议
- 2024年二异丙胺项目规划申请报告
- 发动机进气歧管和冷却器的设计和性能分析考核试卷
- 2024年度软件开发服务框架合同
- 工业锅炉的工作原理和应用考核试卷
- 天然气的产业链与产业集群考核试卷
- 化学矿的生产成本管理与成本效益评估考核试卷
- 2024年度企业生产设备租赁与维护合同
- 2024年度智能交通系统设计与施工承包合同
- 托儿所服务的文化适应与融合考核试卷
- 医学专题-4双相障碍
- 脑出血一病一品
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 中医生活起居护理-疏仁丽
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 外贸公司管理制度
- 庄园推广策划方案
- 子路曾皙冉有公西华侍坐教案
- 《冬季鸡舍通风》课件
- 人教版小学三年级语文课外阅读理解精练试题全册
评论
0/150
提交评论