版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
日喀则市重点中学2023-2024学年中考数学猜题卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各式正确的是()A. B.C. D.2.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有()A.0个 B.1个 C.2个 D.3个3.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.4.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.52 B.32 C.55.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130° B.120° C.110° D.100°6.估算的运算结果应在(
)A.2到3之间 B.3到4之间C.4到5之间 D.5到6之间7.下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y68.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖9.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=45,反比例函数yA.10B.9C.8D.6二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.12.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=_____.15.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.16.若m、n是方程x2+2018x﹣1=0的两个根,则m2n+mn2﹣mn=_________.17.已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为__________.三、解答题(共7小题,满分69分)18.(10分)先化简:,再请你选择一个合适的数作为x的值代入求值.19.(5分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.20.(8分)如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.21.(10分)先化简,再求值:,其中x=.22.(10分)计算:.化简:.23.(12分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.24.(14分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】∵,则B错;,则C;,则D错,故选A.2、B【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b(k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3、B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.4、A【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB⋅ACAD=4∴⊙O的直径等于52故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.5、D【解析】分析:先根据圆内接四边形的性质得到然后根据圆周角定理求详解:∵∴∴故选D.点睛:考查圆内接四边形的性质,圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6、D【解析】
解:=,∵2<<3,∴在5到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.7、D【解析】
根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【详解】解:A、2x-x=x,错误;B、x2•x3=x5,错误;C、(m-n)2=m2-2mn+n2,错误;D、(-xy3)2=x2y6,正确;故选D.【点睛】考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.8、D【解析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是1+2+2+34C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件9、C【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键10、A【解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA•sin∠AOB=45a,OM=OA2∴点A的坐标为(35a,4∵点A在反比例函数y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF•sin∠FBN=45b,BN=BF2∴点F的坐标为(10+35b,4∵点F在反比例函数y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故选A.“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA二、填空题(共7小题,每小题3分,满分21分)11、【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案为.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.13、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.14、【解析】
延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.15、1【解析】
根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,,解得,,故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、1【解析】
根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【详解】解:∵m、n是方程x2+2018x﹣1=0的两个根,m+n=-2018,=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【点睛】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0的两根分别为x1与x2,则17、3或1【解析】
菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.【详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,当点E在对角线交点左侧时,如图2所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案为3或1.【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.三、解答题(共7小题,满分69分)18、x﹣1,1.【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.【详解】解:原式==x﹣1,根据分式的意义可知,x≠0,且x≠±1,当x=2时,原式=2﹣1=1.【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.19、(1);(2)【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,∴甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)详见解析;(2)30°.【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,∵EF为AB的垂直平分线,∴PA=PB,∴点P即为所求.(2)如图,连接AP,∵,∴,∵AP是角平分线,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当时,AP平分.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电机产品广告宣传与媒体投放合同3篇
- 2024年度美甲店装修设计合同
- 2024年度广告发布及赞助合同
- 《铅酸蓄电池维护》课件
- 《复地西安项目提案》课件
- 2024中国移动江西公司社会招聘24人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信青海海东分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信杭州分公司招聘20人(浙江)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国江西国际经济技术合作限公司所属企业职业经理人公开选聘2人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国安能集团第二工程局限公司厦门分公司校园招聘90人易考易错模拟试题(共500题)试卷后附参考答案
- 2024市场营销知识竞赛题库及答案(共169题)
- 重庆市渝北区六校联考2024届九年级上学期期中考试数学试卷(含答案)
- 《科研诚信与学术规范》学习通超星期末考试答案章节答案2024年
- 2024年平面设计师技能及理论知识考试题库(附含答案)
- 部编版语文四年级上册第五单元大单元作业设计
- 2024年全国学宪法讲宪法知识竞赛考试题库(三套完整版)
- 2024-2025学年部编版(2024)七年级历史上册知识点提纲
- 2024年公安机关招警面试题及参考答案
- 2024-2030年中国丙型肝炎病毒(HCV)检测行业市场发展趋势与前景展望战略分析报告
- 初一期中家长会课件
- 医院患者人文关怀管理制度
评论
0/150
提交评论