一种满足可靠性和能效的云工作流调度方法_第1页
一种满足可靠性和能效的云工作流调度方法_第2页
一种满足可靠性和能效的云工作流调度方法_第3页
一种满足可靠性和能效的云工作流调度方法_第4页
一种满足可靠性和能效的云工作流调度方法_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一种满足可靠性和能效的云工作流调度方法Title:Energy-EfficientandReliableCloudWorkflowSchedulingMethodAbstract:Cloudcomputinghasbecomeanessentialparadigmforexecutingcomplexworkflowsinadistributedenvironment.Toensuretheefficientutilizationofcloudresources,researchershavefocusedondevelopingworkflowschedulingmethodsthataimtooptimizebothreliabilityandenergyefficiency.Thispaperproposesanovelcloudworkflowschedulingmethodthataddressesthechallengesofachievingreliableexecutionwhileminimizingenergyconsumption.Theproposedmethodincorporatestaskallocation,resourceprovision,andtaskschedulingstrategieswiththegoalofachievinganoptimalbalancebetweenreliabilityandenergyefficiency.Experimentalsimulationsdemonstratetheeffectivenessoftheproposedmethodinmeetingthedesiredobjectives.1.Introduction:1.1Background1.2ProblemStatement1.3Objectives2.LiteratureReview:2.1CloudWorkflowSchedulingMethods2.2ReliabilityandEnergyEfficiencyTrade-off2.3ExistingApproachesandLimitations3.ProposedMethod:3.1SystemModel3.2TaskAllocationStrategy3.3ResourceProvisionStrategy3.4TaskSchedulingStrategy4.ExperimentalEvaluation:4.1ExperimentalSetup4.2PerformanceMetrics4.3ComparativeAnalysiswithExistingMethods4.4ResultsandDiscussion5.Discussion:5.1PerformanceEvaluation5.2ReliabilityEnhancementTechniques5.3EnergyEfficiencyOptimizationTechniques5.4Trade-offandOptimizations6.Conclusion:6.1RecapofContributions6.2FutureRecommendations1.Introduction:1.1Background:Cloudcomputinghasemergedasapowerfulplatformforexecutingcomplexworkflowsduetoitsscalability,flexibility,andcost-effectiveresourceallocation.Cloudworkflowschedulingaimstoassigntaskstosuitablecloudresourcestooptimizetheoverallsystem'sperformance,includingreliabilityandenergyefficiency.1.2ProblemStatement:Efficientworkflowschedulingrequiresbalancingthetrade-offbetweenreliabilityandenergyefficiency.Existingmethodseitherfocussolelyonimprovingreliabilityatthecostofenergyconsumptionorprioritizeenergyefficiencywhileneglectingreliability.Findingabalancebetweentheseconflictingobjectivesiscrucialforreal-worldcloudworkflowexecution.1.3Objectives:Thispaperaimstoproposeacloudworkflowschedulingmethodthatcanachievereliableexecutionwhileminimizingenergyconsumption.Theobjectivesareasfollows:a)Developataskallocationstrategythatconsiderstheworkflowdependenciesandresourceavailability.b)Designaresourceprovisionstrategythatoptimizesresourceallocationwhileconsideringreliabilityandenergyefficiency.c)Deviseataskschedulingstrategythatoptimizestheexecutionorderoftaskstominimizeenergyconsumptionwithoutjeopardizingoverallreliability.d)Evaluatetheproposedmethodthroughexperimentalsimulationsandcompareitsperformancewithexistingmethods.2.LiteratureReview:2.1CloudWorkflowSchedulingMethods:Thissectionprovidesanoverviewofexistingcloudworkflowschedulingmethods,includingtaskallocation,resourceprovision,andtaskschedulingstrategies.Thelimitationsofthesemethodsinachievingbothreliabilityandenergyefficiencyarehighlighted.2.2ReliabilityandEnergyEfficiencyTrade-off:Thereexistsaninherenttrade-offbetweenreliabilityandenergyefficiencyincloudworkflowscheduling.Increasingreliabilityoftenrequiresredundanttaskexecution,leadingtohigherenergyconsumption.Balancingthistrade-offisasignificantchallengethatneedstobeaddressed.2.3ExistingApproachesandLimitations:Existingmethodseitherfocusonreliabilityenhancementbyemployingredundanttaskallocationorenergyefficiencyoptimizationbyassigningtaskstolow-powerresources.However,thesemethodsfailtoachieveanoptimalbalancebetweenreliabilityandenergyefficiency.3.ProposedMethod:3.1SystemModel:Thissectiondescribesthesystemmodel,includingworkflowrepresentation,taskdependencies,andresourceavailability.Theproposedmethodconsidersthesefactorstomakeinformeddecisionsregardingtaskallocation,resourceprovision,andtaskscheduling.3.2TaskAllocationStrategy:Tomaximizereliabilityandenergyefficiency,anintelligenttaskallocationstrategyisproposed.Thisstrategyincorporatestheworkflowstructure,taskdependencies,andresourceavailabilitytodeterminetheoptimalallocationoftaskstocloudresources.3.3ResourceProvisionStrategy:Tooptimizeresourceallocation,aresourceprovisionstrategyisdevelopedthatconsidersthereliabilityandenergyconsumptioncharacteristicsofdifferentcloudresources.Thestrategyaimstoprovisionresourcesthatcanmeetthereliabilityrequirementsoftaskswhileminimizingenergyconsumption.3.4TaskSchedulingStrategy:Ataskschedulingstrategyisproposedtooptimizetheexecutionorderoftasksconsideringbothreliabilityandenergyefficiency.Thisstrategyaimstominimizetheoverallenergyconsumptionwithoutcompromisingthereliabilityoftheworkflow.4.ExperimentalEvaluation:4.1ExperimentalSetup:Theexperimentalsetupisdescribed,includingtheworkflowdataset,resourcecharacteristics,andevaluationmetrics.Theproposedmethodiscomparedagainstexistingmethodstoevaluateitsperformanceintermsofreliabilityandenergyefficiency.4.2PerformanceMetrics:Metricssuchasreliability,energyconsumption,makespan,andresourceutilizationareusedtoevaluatetheperformanceoftheproposedmethodandcompareitwithexistingmethods.4.3ComparativeAnalysiswithExistingMethods:Theproposedmethodiscomparedwithexistingmethodsbasedonperformancemetrics.Thecomparativeanalysishighlightstheadvantagesandlimitationsoftheproposedmethod.4.4ResultsandDiscussion:Theexperimentalresultsarepresentedandanalyzedtodemonstratetheeffectivenessoftheproposedmethodinachievingreliableexecutionwhileminimizingenergyconsumption.Theresultsvalidatetheproposedmethod'sabilitytostrikeabalancebetweenreliabilityandenergyefficiency.5.Discussion:5.1PerformanceEvaluation:Theperformanceevaluationdiscussestheimpactoftheproposedmethodonreliabilityandenergyefficiency.Theresultsarecomparedwithexistingmethods,andthestrengthsandweaknessesoftheproposedmethodareidentified.5.2ReliabilityEnhancementTechniques:Additionaltechniquestoenhancereliability,suchasfaulttolerancemechanisms,redundancymanagement,anderrordetection,arediscussedtofurtherimprovethereliabilityofcloudworkflowexecution.5.3EnergyEfficiencyOptimizationTechniques:Methodstooptimizeenergyefficiency,suchasdynamicvoltagefrequencyscaling,taskconsolidation,andloadbalancing,arediscussedaspossiblefuturedirectionsforimprovingenergyefficiencyincloudworkflowexecution.5.4Trade-offandOptimizations:Thetrade-offbetweenreliabilityandenergyefficiencyisanalyzed,alongwithpotentialoptimizationtechniquestoachieveabetterbalance.Techniquessuchasgeneticalgorithms,heuristicalgorithms,andmachinelearningcanbeexploredtooptimizetheschedulingdecisionsfurther.6.Conclusion:6.1RecapofContributions:Thepapersummarizesthecontributionsoftheproposedmethodinachievingreliableexecutionwhileminimizingenergyconsumption.Thekeyfeaturesandadvantagesoftheproposedmet

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论