版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市道口中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a>0,b>0,a+b=2,则y=的最小值是(
)
A.
B.4
C.
D.5参考答案:C2.若=________ A.1 B.—1 C.2 D.—2参考答案:A略3.如图程序框图的算法思路源于欧几里得名著《几何原本》中的“辗转相除法”,执行该程序框图,若输入m,n分别为225、135,则输出的m=()A.5 B.9 C.45 D.90参考答案:C【考点】程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:模拟程序框图的运行过程,如下;m=225,n=135,225÷135=1…90,r=90,不满足退出循环的条件;m=135,n=90,135÷90=1…45,r=45不满足退出循环的条件m=90,n=45,90÷45=2…0,r=0满足退出循环的条件故输出m=45.故选:C【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,是基础题.4.已知等差数列满足,,,则的值为A.
B.
C.
D.参考答案:C5.的结果为
A.1
B.2
C.3
D.不存在参考答案:B6.已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,给出以下结论:①f(x)的解析式为f(x)=x3-4x,x∈[-2,2];②f(x)的极值点有且仅有一个;③f(x)的最大值与最小值之和等于0.其中正确的结论有A.0个
B.1个
C.2个
D.3个参考答案:CC函数图像过原点,则c=0,又f′(x)=3x2+2ax+b,由f′(±1)=-1,解得a=0,b=-4,因此①正确;对于②,f′(x)=0在[-2,2]上有两个不相等的实数根,因此错误;又函数为奇函数,根据奇函数性质可知③正确.7.已知函数若互不相等,且,则的取值范围是A.(1,2014)
B.(1,2015)
C.(2,2015)
D.[2,2015]参考答案:C8.设,则(
)A.
B.
C.
D.参考答案:A9.在等比数列中,,则(
)A.或—8
B.或
C.或8
D.或参考答案:B10.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.
B.
C.
D.参考答案:C圆心为F(c,0),渐渐线为:,由题,所以,即离心率为,选C.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,则
参考答案:2
略12.已知=(1,﹣1),=(﹣1,2),则(2+)?=
.参考答案:﹣1【考点】平面向量数量积的运算.【分析】直接利用向量的坐标运算以及向量的数量积求解即可.【解答】解:=(1,﹣1),=(﹣1,2),则2+=(1,0)(2+)?=﹣1+0=﹣1.故答案为:﹣1.13.在△ABC中,三边a,b,c的对角分别为A,B,C,若a2+b2=2018c2,则=.参考答案:2017【考点】正弦定理.【分析】利用余弦定理表示出cosC,把已知等式代入得到关系式,记作①,利用正弦定理化简,整理即可得出所求式子结果.【解答】解:在△ABC中,∵a2+b2=2018c2,∴cosC==,即2abcosC=2017c2,①由正弦定理=2R,得到a=2RsinA,b=2RsinB,c=2RsinC,代入①得:2?2RsinA?2RsinBcosC=2017?4R2sin2C,即2sinAsinBcosC=2017sin2C=2017(1﹣cos2C),则=2017.故答案为:2017.【点评】此题考查了余弦定理,正弦定理,熟练掌握定理是解本题的关键.14.设满足,则的取值范围是▲参考答案:[2,+∞]15..已知是第二象限角,且______.
参考答案:略16.按右面的程序框图运行后,输出的应为__________.参考答案:40略17.对于实数,当时,规定,则不等式的解集为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(2016秋?贵州月考)某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域;(2)求小陈比小李至少晚5分钟到班的概率.参考答案:【考点】几何概型.【分析】(Ⅰ)用x,y分别表示小陈、小李到班的时间,则x∈[10,30],y∈[10,30],作出正方形区域得答案;(Ⅱ)小陈比小李至少晚到5分钟,即x﹣y≥5,由线性规划知识求出可行域,利用面积比得答案.【解答】解:(Ⅰ)用x,y分别表示小陈、小李到班的时间,则x∈[10,30],y∈[10,30],所有可能结果对应坐标平面内一个正方形区域ABCD,如图所示.(Ⅱ)小陈比小李至少晚到5分钟,即x﹣y≥5,对应区域为△BEF,所求概率.【点评】本题考查几何概型,体现了数学转化思想方法,关键是由题意作出图形,是中档题.19.已知函数f(x)=x2+bx﹣alnx.(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;(3)若对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数f(x)的导数,通过判断导函数的符号,得到函数的单调区间,从而判断出函数的极值即可;(2)先求导得到f′(x),由f′(2)=4﹣+b=0,f(1)=1+b=0,得到a与b的值,再令导数大于0,或小于0,得到函数的单调区间,再由零点存在性定理得到得到x0∈(3,4),进而得到n的值;(3)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],则g(b)为关于b的一次函数且为增函数,由于对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,则g(b)max=g(﹣1)=x2﹣x﹣alnx<0在x∈(1,e)有解.令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可.【解答】解:(1)f(x)=x2+bx﹣alnx,(x>0),f′(x)=2x+b﹣,f″(x)=2+>0,故f′(x)在(0,+∞)递增,故x→0时,f′(x)→﹣∞,x→+∞时,f(x)→+∞,故存在x0∈(0,+∞),使得:x∈(0,x0)时,f′(x)<0,f(x)递减,x∈(x0,+∞)时,f′(x)>0,f(x)递增,故函数f(x)存在极小值,但不存在极大值;(2)f′(x)=2x﹣+b,∵x=2是函数f(x)的极值点,∴f′(2)=4﹣+b=0.∵1是函数f(x)的零点,得f(1)=1+b=0,由,解得a=6,b=﹣1,∴f(x)=x2﹣x﹣6lnx,令f′(x)=2x﹣﹣1=>0,x∈(0,+∞),得x>2;
令f′(x)<0得0<x<2,所以f(x)在(0,2)上单调递减;在(2,+∞)上单调递增故函数f(x)至多有两个零点,其中1∈(0,2),x0∈(2,+∞),因为f(2)<f(1)=0,f(3)=6(1﹣ln3)<0,f(4)=6(2﹣ln4)=6ln>0,所以x0∈(3,4),故n=3.(3)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],则g(b)为关于b的一次函数且为增函数,根据题意,对任意b∈[﹣2,﹣1],都存在x∈(1,e),使得f(x)<0成立,则g(b)max=g(﹣1)=x2﹣x﹣alnx<0在x∈(1,e)有解,令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可,由于h′(x)=2x﹣1﹣=,令φ(x)=2x2﹣x﹣a,φ′(x)=4x﹣1>0,∴φ(x)在(1,e)上单调递增,φ(x)>φ(1)=1﹣a,①当1﹣a≥0,即a≤1时,φ(x)>0,即h′(x)>0,h(x)在(1,e)上单调递增,∴h(x)>h(1)=0,不符合题意.②当1﹣a<0,即a>1时,φ(1)=1﹣a<0,φ(e)=2e2﹣e﹣a.若a≥2e2﹣e>1,则φ(e)<0,∴在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.若2e2﹣e>a>1,则φ(e)>0,∴在(1,e)上一定存在实数m,使得φ(m)=0,∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,h(x)在(1,m)上单调递减,∴存在存在x0∈(1,m)使得h(x0)<h(1)=0,符合题意.综上所述,当a>1时,对?b∈[﹣2,﹣1],都有?x∈(1,e)(e为自然对数的底数),使得f(x)<0成立.20.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的非负半轴为极轴建立极坐标标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)若点坐标为,直线交曲线于两点,求的值.参考答案:(1)由消去参数,得直线的普通方程为又由得,由得曲线的直角坐标方程为(2)其代入得,则所以.21.(本小题满分12分)如图3,是平行四边形,已知,,平面平面.(Ⅰ)证明:(Ⅱ)若,求三棱锥的高.参考答案:(Ⅰ)∵是平行四边形,且,∴,故.
(1分)取BC的中点F,连结EF,∵,∴.
(2分)又∵平面平面,∴平面.
(3分)∵平面,∴
(4分)∵平面,∴平面,
(5分)∵平面,∴
(6分)(Ⅱ)由(Ⅰ)知是三棱锥的高,且
(7分)∴三棱锥的体积:
(8分)在?ABE中,AB=4,BF=1,?ABF=120?,所以.
(9分)在Rt?AFE中,.在?ABE中,,所以,所以.
(10分)设三棱锥的高为,则其体积为
(11分)由,得,解得,即三棱锥的高等于.(12分)22.已知椭圆C:+=1(a>b>0)的左、右焦点分别F1(﹣,0),F2(,0),直线x+y=0与椭圆C的一个交点为(﹣,1),点A是椭圆C上的任意一点,延长AF交椭圆C于点B,连接BF2,AF2(1)求椭圆C的方程;(2)求△ABF2的内切圆的最大周长.参考答案:【考点】椭圆的简单性质.【分析】(1)由题意可得c=,把点的坐标代入椭圆方程,结合隐含条件求得a2=4,b2=2.则椭圆方程可求;(2)设出AB所在直线方程x=ty﹣,联立直线方程和椭圆方程,由根与系数的关系得到A,B的纵坐标的和与积,求出|y1﹣y2|取最大值时的t值,得到A的坐标,由圆心到三边的距离相等求得最大内切圆的半径,则答案可求.【解答】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新能源光伏发电项目EPC合同3篇
- 2024年度事业单位专业技术人员聘用合同范本签订指南3篇
- 2024年某广告公司与广告主就广告投放之合同
- 2024版个人租赁房屋物业服务合同3篇
- 2024年标准化公路物流运输服务协议细则版B版
- 2024版原料供应合同:注塑车间长期原料供应合同3篇
- 2024年度:人力资源管理-医疗器械部门3篇
- 2024年标准技术服务协议模板版
- 2024年度陕西写字楼租赁合同2篇
- 2024年度煤矿瓦斯抽采与利用合同2篇
- 《物流系统规划与设计》课程教学大纲
- 浙江标准农贸市场建设与管理规范
- 护理质控分析整改措施(共5篇)
- 金属矿山安全教育课件
- 托盘演示教学课件
- 中华农耕文化及现实意义
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- 2023年高考数学求定义域专题练习(附答案)
- 农产品品牌与营销课件
- 苏科版一年级心理健康教育第17节《生命更美好》教案(定稿)
- 车辆二级维护检测单参考模板范本
评论
0/150
提交评论