版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市江海区礼乐中学2024年高考临考冲刺数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,角的对边分别为,若,,,则的面积为()A. B. C. D.2.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.3.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.4.已知复数,为的共轭复数,则()A. B. C. D.5.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.016.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40407.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.9.已知复数,则的虚部为()A. B. C. D.110.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.511.函数在的图象大致为A. B.C. D.12.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,常数项为________.(用数字作答)14.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.15.曲线在点处的切线方程是__________.16.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.18.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.19.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.20.(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。21.(12分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.22.(10分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先求出,由正弦定理求得,然后由面积公式计算.【详解】由题意,.由得,.故选:A.【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.2、C【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.3、C【解析】
根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.4、C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.5、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.6、D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.7、D【解析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。8、D【解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.9、C【解析】
先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.10、C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模11、A【解析】
因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.12、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.14、100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,∴样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.15、【解析】
利用导数的几何意义计算即可.【详解】由已知,,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.16、【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.18、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.19、(1)43,47;(2)分布列见解析,.【解析】
(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.20、(1)见证明;(2)【解析】
(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值.【详解】(1)当时,,于是,.又因为,当时,且.故当时,,即.所以,函数为上的增函数,于是,.因此,对,;(2)方法一:由题意在上存在极值,则在上存在零点,①当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;所以为函数的极小值点;②当时,在上成立,所以在上单调递增,所以在上没有极值;③当时,在上成立,所以在上单调递减,所以在上没有极值,综上所述,使在上存在极值的的取值范围是.方法二:由题意,函数在上存在极值,则在上存在零点.即在上存在零点.设,,则由单调性的性质可得为上的减函数.即的值域为,所以,当实数时,在上存在零点.下面证明,当时,函数在上存在极值.事实上,当时,为上的增函数,注意到,,所以,存在唯一实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年成都市房产交易合同
- 二零二四年车辆维护与清洁服务合同
- 2024年度企业并购协议书2篇
- 2024年度版权代理合同with标的:作家作品代理出版3篇
- 2024版科技企业孵化器投资股权合同3篇
- 电力工程劳务分包合同(2024年度)
- 二零二四年度融资合同:企业债券发行与购买协议
- 2024年度加工承揽合同质量担保
- 瓷砖施工环境保护2024年度合同
- 2024年度高速公路混凝土路面养护合同
- 钢管材质证明书
- 国家中长期科技发展规划纲要2021-2035
- 《谁的得分高》(教学设计)二年级上册数学北师大版
- 采血后并发症及护理-课件
- 签订无固定期限劳动合同申请书
- 北京工商大学百事可乐市场营销分析
- 清华大学出版社机械制图习题集参考答案(课堂PPT)
- 清华大学机械原理课件-第8章-组合机构上课讲义
- 校园监控维护记录表
- 劳动保障监察执法课件
- 小学文明礼仪教育中译六年级上册第九课民族礼仪 哈达
评论
0/150
提交评论