版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市金坛金沙中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,,则
A.c<b<a
B.a<b<c
C.c<a<b
D.a<c<b
参考答案:C略2.函数的图象关于x轴对称的图象大致是
(
)参考答案:B3.已知是R上的偶函数,若将的图像向右平移一个单位后,则得到一个奇函数的图像,若A.0 B.1 C. D.参考答案:B4.已知函数f(x)=,方程f(x)﹣c=0有四个根,则实数c的取值范围是()A.[1,] B.(,1) C.(,) D.(1,)参考答案:D【考点】54:根的存在性及根的个数判断.【分析】首先画出函数图象,利用数形结合得到c的取值范围.【解答】解:f(x)的图象如图:f()=,要使方程f(x)﹣c=0有四个根,则直线y=c与函数f(x)的图象由四个交点,所以实数c的取值范围是(1,);故选D.【点评】本题考查了利用数形结合求方程根的问题;关键是正确画图识图.5.已知某几何体的三视图如右图所示,则该几何体的体积是A.
B.
C.
D.参考答案:C6.复数(i是虚数单位)的共扼复数是A. B. C. D.参考答案:B略7.已知全集,集合,集合,则下列结论中成立的是(
)A.
B. C. D.参考答案:D8.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()A. B. C.4π D.参考答案:D【考点】LG:球的体积和表面积.【分析】由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.【解答】解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D9.2001年至2013年北京市电影放映场次的情况如右图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是(
)A.
B.C.
D.参考答案:D10.集合,的子集中,含有元素的子集共有。(A)2个
(B)4个
(C)6个
(D)8个参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知等差数列中,,,若,则数列的前5项和等于
.参考答案:答案:9012.过点(﹣1,0)与函数f(x)=ex(e是自然对数的底数)图象相切的直线方程是.参考答案:y=x+1略13.某单位为了了解用电量(度)与当天平均气温(°C)之间的关系,随机统计了某4天的当天平均气温与用电量(如右表)。由数据运用最小二乘法得线性回归方程,则__________.参考答案:60
【知识点】线性回归方程.I4解析:,,样本中心为,回归直线经过样本中心,所以.故答案为60.【思路点拨】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.14.已知定义域为R的函数满足,且,
则=
;参考答案:15.若复数z=4+3i,其中i是虚数单位,则复数z的模为,的值为.参考答案:5,.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:|z|==5,===,故答案为:5,.16.函数的零点是
参考答案:1017.已知正实数,则的值为__________.
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知等差数列的前n项的和为,非常数等比数列的公比是q,且满足:,.(I)求;(II)设,若数列是递减数列,求实数的取值范围.参考答案:19.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=5时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.参考答案:考点:绝对值不等式;对数函数图象与性质的综合应用;绝对值不等式的解法.专题:压轴题;选作题;分类讨论;不等式的解法及应用.分析:对于(1)当m=5时,求函数f(x)的定义域.根据m=5和对数函数定义域的求法可得到:|x+1|+|x﹣2|>5,然后分类讨论去绝对值号,求解即可得到答案.对于(2)由关于x的不等式f(x)≥1,得到|x+1|+|x﹣2|>m+2.因为已知解集是R,根据绝对值不等式可得到|x+1|+|x﹣2|≥3,令m+2<3,求解即可得到答案.解答: 解:(1)由题设知:当m=5时:|x+1|+|x﹣2|>5,不等式的解集是以下三个不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣2)∪(3,+∞);(2)不等式f(x)≥1即log2(|x+1|+|x﹣2|﹣m)≥1.即|x+1|+|x﹣2|≥m+2,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+2解集是R,∴m+2≤3,m的取值范围是(﹣∞,1].故答案为:(﹣∞,1].点评:此题主要考查绝对值不等式的应用问题,题中涉及到分类讨论的思想,考查学生的灵活应用能力,属于中档题目.20.(本大题12分)
已知函数定义域为,且满足.
(Ⅰ)求解析式及最小值;
(Ⅱ)设,求证:,.参考答案:(1),
(2),
故,令
求导易知最大值为,而,且(求导可知)
故略21.(12分)(2015?青岛一模)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=1,AB=,AD=AA1=3,E1为A1B1中点.(Ⅰ)证明:B1D∥平面AD1E1;(Ⅱ)证明:平面ACD1⊥平面BDD1B1.参考答案:【考点】:直线与平面平行的判定;平面与平面垂直的判定.【专题】:空间位置关系与距离.【分析】:(Ⅰ)连结A1D交AD1于G,证明B1D∥E1G,利用直线与平面平行的判定定理证明B1D∥平面AD1E1.(Ⅱ)设AC∩BD=H,通过△BHC~△DHA,结合BC=1,AD=3,求出,,证明AC⊥BD,然后证明BB1⊥AC,得到AC⊥平面BDD1B1,利用平面与平面垂直的判定定理证明平面ACD1⊥平面BDD1B1.(本小题满分12分)证明:(Ⅰ)连结A1D交AD1于G,因为ABCD﹣A1B1C1D1为四棱柱,所以四边形ADD1A1为平行四边形,所以G为A1D的中点,又E1为A1B1中点,所以E1G为△A1B1D的中位线,所以B1D∥E1G…(4分)又因为B1D平面AD1E1,E1G平面AD1E1,所以B1D∥平面AD1E1.
…(6分)(Ⅱ)设AC∩BD=H,因为AD∥BC,所以△BHC~△DHA又BC=1,AD=3,所以,∵AD∥BC,∠BAD=90°,所以∠ABC=90°∴,从而,,所以CH2+BH2=BC2,CH⊥BH,即AC⊥BD…(9分)因为ABCD﹣A1B1C1D1为四棱柱,AA1⊥底面ABCD所以侧棱BB1⊥底面ABCD,又AC底面ABCD,所以BB1⊥AC…(10分)因为BB1∩BD=B,所以AC⊥平面BDD1B1…(11分)因为AC平面ACD1,所以平面ACD1⊥平面BDD1B1.…(12分)【点评】:本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力以及逻辑推理能力.22.已知抛物线C:y2=4x,点M与抛物线C的焦点F关于原点对称,过点M且斜率为k的直线l与抛物线C交于不同两点A,B,线段AB的中点为P,直线PF与抛物线C交于两点E,D.(Ⅰ)判断是否存在实数k使得四边形AEBD为平行四边形.若存在,求出k的值;若不存在,说明理由;(Ⅱ)求的取值范围.参考答案:【考点】K8:抛物线的简单性质;KN:直线与抛物线的位置关系.【分析】(Ⅰ)设直线l的方程,代入抛物线方程,利用韦达定理及中点坐标公式求得P点坐标,求得直线PF的方程,代入抛物线方程,若四边形AEBD为平行四边形,当且仅当=,即k2(k2﹣1)=0,求得k的值,由k不满足|k|<1且k≠0,故不存在k使得四边形AEBD为平行四边形.(Ⅱ)由,根据k的取值范围,即可求得的取值范围.【解答】解:(Ⅰ)设直线l的方程为y=k(x+1),设A(x1,y1),B(x2,y2),E(x3,y3),D(x4,y4).联立方程组,整理得k2x2+(2k2﹣4)x+k2=0.显然k≠0,且△>0,即(2k2﹣4)2﹣4k4>0,得|k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 12690.21-2024稀土金属及其氧化物中非稀土杂质化学分析方法第21部分:稀土氧化物中硫酸根含量的测定硫酸钡比浊法
- 2024年度电子产品维修公司服务合同
- 2024年度电商平台品牌策划合同3篇
- 2024年度租赁合同之标的财产详细描述
- 《管理与管理者》课件
- 2024年度二手住宅买卖补充协议3篇
- 2024年度租房合同详细规定房屋租赁期间的违约责任2篇
- 2024年度知识产权许可使用合同:专利权人与使用人就专利权使用达成协议
- 2024年度北京房产交易进度跟踪合同
- 2024年度企业环保技术与应用合同2篇
- 【农村产业融合发展探究的国内外文献综述3300字】
- GB/T 37342-2024国家森林城市评价指标
- 三年级除法竖式300道题及答案
- 某大型工业设备翻新集团企业数字化转型SAP解决方案
- 关于中医颈椎病
- 第五单元达标检测卷-2024-2025学年语文六年级上册统编版
- 综合实践项目 制作细胞模型 教学设计-2024-2025学年人教版生物七年级上册
- 7 健康看电视第二课时(教学设计)-2023-2024学年道德与法治四年级上册(部编版)
- 2024至2030年全球与中国NFT艺术交易平台市场现状及未来发展趋势
- 中班科学课件《动物的超级本领》
- 干部履历表填写范本(中共中央组织部1999年)
评论
0/150
提交评论