安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析_第1页
安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析_第2页
安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析_第3页
安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析_第4页
安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市庐江庐南高级中学高三数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列的首项为,为等差数列且.若则,,则

A.0

B.3

C.8

D.11

参考答案:2.已知,则等于

)A.

B.

C.

D.参考答案:A略3.如果执行如图的程序框图,那么输出的值是A.2016 B.2C. D.参考答案:B4.已知抛物线的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率为(

)A. B. C. D.参考答案:B【分析】求得抛物线的焦点,利用定义得到,求得,再由,求得,进而可求解直线的斜率,得到答案.【详解】由题意,抛物线的焦点,设,线段的中点,所以,由弦的中点到抛物线的准线的距离为5,即,则,又由,两式相减得,则,又由,所以,即,解得,所以直线的斜率为,故选B.【点睛】本题主要考查了直线与抛物线的中点弦问题,以及斜率公式的应用,其中解答中合理利用平方差法和斜率公式,列出关于的方程,求得的值是解答的关键,着重考查了推理与运算能力,属于中档试题.5.已知函数,若则的取值范围是(

A.

参考答案:【知识点】函数的奇偶性,解不等式.

B4

E3【答案解析】C

解析:因为,所以是偶函数,所以为,解得,所以选C.【思路点拨】先确定是偶函数,所以为,解得.6.若集合A={x|},B={x||x|<3},则集合A∪B为()A.{x|﹣5<x<3} B.{x|﹣3<x<2} C.{x|﹣5≤x<3} D.{x|﹣3<x≤2}参考答案:C【考点】并集及其运算.【分析】分别化简集合A,B,再由并集的含义即可得到.【解答】解:集合={x|﹣5≤x<2},B={x||x|<3}={x|﹣3<x<3},则A∪B={x|﹣5≤x<3}.故选:C.7.已知函数f(x)=sinx-x(x∈[0,π]),那么下列结论正确的是

).A.f(x)在上是增函数B.f(x)在上是减函数C.?x∈,D.?x∈,。参考答案:D试题分析:由于,,得,由得,因此函数的单调递增区间,单调递减区间,当时,取最大值,故答案为D.考点:函数的单调性与导数的关系.8.关于函数,(是正常数).下列命题说法正确的是

(

)①函数的最小值是;②函数在上存在反函数;③函数在每一点处都连续;④函数在处可导.①②

①③

②③

③④参考答案:B9.中,“”是“”的()A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:C10.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于(

) A. B. C.1 D.4参考答案:D考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.解答: 解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,kFN==﹣,kFN=﹣=﹣2∴=2,求得a=4,故选D.点评:本题主要考查了抛物线的简单性质.抛物线中涉及焦半径的问题常利用抛物线的定义转化为点到准线的距离来解决.二、填空题:本大题共7小题,每小题4分,共28分11.如果函数,,关于的不等式对于任意恒成立,则实数的取值范围是▲

.参考答案:略12.如图,已知椭圆的左顶点为,左焦点为,

上顶点为,若,则该椭圆的离心率是

.参考答案:13.若数列满足,,则

;前5项的和

.参考答案:由,得数列是公比为2的等比数列,所以,。14.,的值域为.参考答案:[1,2]略15.已知O是△ABC内心,若=+,则cos∠BAC=.参考答案:【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】过O作OD∥AC,OE∥AB,因为O是内心,得到四边形ADOE是菱形,所以AD=AE=DO,由平行四边形法则得到,设AB=5k,过O作OF∥BC交AB于F,通过数据线相似得到BF,OF的长度,在三角形ODF中,利用余弦定理求cos∠DFO.【解答】解:如图,过O作OD∥AC,OE∥AB,因为O是内心,所以四边形ADOE是菱形,并且=λ=+,所以,又AD=AE,所以,设AB=5k,则AC=10k,OD=2k,过O作OF∥BC交AB于F,则∠4=∠5,又∠3=∠4,所以∠3=∠5,所以BF=OF,又△ABC∽△DFO,所以BF:AB=DO:AC,则DF=k,所以BF=AB﹣AD﹣DF=5k﹣2k﹣k=2k,所以OF=2k,所以cos∠BAC=cos∠FDO==;故答案为:.【点评】本题考查了向量的平行四边形法则以及利用余弦定理求角;关键是适当作出辅助线,将问题转化为解三角形.属于难题.16.设等比数列{an}的公比q=y,前n项和为Sn,则=________.参考答案:63略17.若函数,则不等式的解集为

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数f(x)=,(a>0)。(1)当a=1时,求函数y=f(x)在x=1处的切线方程;(2)求函数f(x)在[a,2a]上的最小值;(3)证明:x∈(0,+∞),都有lnx>。

参考答案:解:(1)时,切线斜率,切点为,切线方程为(2),令

①当时,,在上单调递增,;②当,即时,在上单调递减,在上单调递增,;③当时,,在上单调递减,(3)要证的不等式两边同乘以,则等价于证明令,则由(1)知令,则,当时,,递增;当时,,递增减;所以,且最值不同时取到,即,都有。

19.已知函数,.(1)若曲线在点处的切线与直线垂直,求的值;(2)求函数的单调区间;(3)设,当时,都有成立,求实数的取值范围.参考答案:解:(Ⅰ)由已知得.因为曲线在点处的切线与直线垂直,所以.所以.所以.……3分(Ⅱ)函数的定义域是,.

(1)当时,成立,所以的单调增区间为.(2)当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.

综上所述,当时,的单调增区间为;当时,的单调增区间是,的单调减区间是.

…………8分(Ⅲ)当时,成立,.“当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”.令得,且,又因为,所以函数在上为减函数;

令得,,又因为,所以函数在上为增函数.所以函数在处取得最小值,且.所以.

又因为,所以实数的取值范围.

………12分略20.已知函数

(1)若,求的最大值和最小值;

(2)若.求的值,参考答案:略21.某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖,甲、乙、丙三名老师都有“获奖”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率为,且三人投票相互没有影响,若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X的分布列及数学期望.参考答案:考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)设“某节目的投票结果是最终获一等奖”为事件A,则事件A包含该节目可以获2张“获奖票”或该节目可以获3张“获奖票”,由此能求出某节目的投票结果是最终获一等奖的概率.(2)所含“获奖”和“待定”票数之和X的值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及数学期望.解答: 解:(1)设“某节目的投票结果是最终获一等奖”为事件A,则事件A包含该节目可以获2张“获奖票”或该节目可以获3张“获奖票”,∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率为,且三人投票相互没有影响,∴某节目的投票结果是最终获一等奖的概率:P(A)==.(2)所含“获奖”和“待定”票数之和X的值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123PE(X)==2.点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.22.已知椭圆W:(a>b>0)的上下顶点分别为A,B,且点B(0,﹣1).F1,F2分别为椭圆W的左、右焦点,且∠F1BF2=120°.(Ⅰ)求椭圆W的标准方程;(Ⅱ)点M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点.直线AE与直线y=﹣1交于点C,G为线段BC的中点,O为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论