初一数学上下册知识点总结与重点难点、公式总结 初中数学知识点总结大全_第1页
初一数学上下册知识点总结与重点难点、公式总结 初中数学知识点总结大全_第2页
初一数学上下册知识点总结与重点难点、公式总结 初中数学知识点总结大全_第3页
初一数学上下册知识点总结与重点难点、公式总结 初中数学知识点总结大全_第4页
初一数学上下册知识点总结与重点难点、公式总结 初中数学知识点总结大全_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学上下册知识点总结与重点难点、公式总结+初中数学知识点总结大全第一册有理数代数初步知识1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“•”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“•”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过的0以外的数叫做正数。数0既不是正数也不是负数,0是正数与负数的分界。在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵同一根数轴,单位长度不能改变。一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。1.2.3只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。在任意一个数前面添上“-”号,新的数就表示原数的相反数。1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。⑵两个负数,绝对值大的反而小。1.3有理数的加减法1.3.1有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。⑶一个数同0相加,仍得这个数。两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。有理数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。两个数相乘,交换因数的位置,积相等。ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。⑶带分数与字母相乘,带分数应当化成假分数。用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。1.4.2有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。a÷b=a•(b≠0)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。1.5有理数的乘方1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。用科学记数法表示一个n位整数,其中10的指数是n-1。1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程。只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。2.1.2等式的性质等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项。2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。去分母:⑴具体做法:方程两边都乘各分母的最小公倍数⑵依据:等式性质2⑶注意事项:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。长方形、正方形、三角形、圆等都是平面图形。许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。3.1.2点、线、面、体几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线。线和线相交的地方是点。几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。3.2直线、射线、线段经过两点有一条直线,并且只有一条直线。两点确定一条直线。点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。直线桑一点和它一旁的部分叫做射线。两点的所有连线中,线段最短。简单说成:两点之间,线段最短。3.3角的度量角也是一种基本的几何图形。度、分、秒是常用的角的度量单位。把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。3.4角的比较与运算3.4.1角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。3.4.2余角和补角如果两个角的和等于90(直角),就说这两个角互为余角。如果两个角的和等于180(平角),就说这两个角互为补角。等角的补角相等。等角的余角相等。本章知识结构图第四章数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程。4.1喜爱哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据。考察全体对象的调查属于全面调查。4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意回答的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短。二、实施调查将调查问卷复制足够的份数,发给被调查对象。实施调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你收集数据的目的。三、处理数据根据收回的调查问卷,整理、描述和分析收集到的数据。四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。注意:⑴垂线是一条直线。⑵具有垂直关系的两条直线所成的4个角都是90。⑶垂直是相交的特殊情况。⑷垂直的记法:a⊥b,AB⊥CD。画已知直线的垂线有无数条。过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。5.3平行线的性质平行线具有性质:性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4平移⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。图形的这种移动,叫做平移变换,简称平移。第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对。6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。平面上的任意一点都可以用一个有序数对来表示。建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。第七章三角形7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性。7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180。7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的对角线公式:各个角都相等,各条边都相等的多边形叫做正多边形。7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360。7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.1.1不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。9.1.2不等式的性质不等式有以下性质:不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度•时间;(2)工程问题:工作量=工效•工时;(3)比率问题:部分=全体•比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价•折•,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.初中数学知识点总结七年级上册目录知识点重难点有理数1.1正数和负数1.2数轴1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数有理数定义和分类数轴相反数、绝对值、倒数有理数比较大小有理数加减法法则和运算律有理数除法法则有理数乘方的定义和运算法则科学计数法(精确位、有效数字)混合运算法则0既不是正数,也不是负数。数轴三要素:原点,正方向,单位长度。需要掌握数轴的画法。数的大小的比较:(1)数轴表示,从左到右数越来越大。(2)正数大于0,0大于负数。两个负数,绝对值大的反而小。同号相加,绝对值相加,符号不变;异号相加,大的绝对值减去小的绝对值,保留绝对值大的数的符号。交换律结合律适用于有理数的四则运算。负数的奇次幂是负数,偶次幂是正数。第2章整式加减2.1用字母表示数2.2代数式2.3整式加减用字母表示数列式表示数量关系单项式、多项式的定义单项式、多项式的系数和次数同类项、合并同类项整式的加减运算能被2整除的数是偶数,用2n表示,不能被2整除的数是奇数,用2n+1表示。单项式的系数是单项式中数字因数,次数是一个单项式中所有字母指数的和。多项式里次数最高的项叫多项式的次数。所含字母相同,而且相同字母的次数相同的单项式,叫做同类项。几个整式相加减,如果有括号就先去括号,然后合并同类项。整式的运算结果,将多项式按照某个字母指数从小到大或者从大到小依次排列,这种排列叫做关于这个字母的降幂或者升幂排列。目录知识点重难点一次方程与方程组3.1一元一次方程及其解法3.2二元一次方程组3.3消元解决方程组3.4用一次方程(组)解决问题一元一次方程的定义和标准形式一元一次方程的解法和一般步骤一元一次方程解应用题二元一次方程和方程组的定义二元一次方程组的解法(带入消元法、加减消元法)二元一次方程组解决实际问题一元一次方程是只含有一个未知数,且未知数的次数是1的方程。等式性质1:等式两边加减同一个数或者式子,结果相等。等式性质2:等式两边同乘一个数或者同除以一个不为0的数,结果相等。等式性质3:对称性。等式性质4:传递性。等量代换:把一个量用与她相等的量代替。解一元一次方程的步骤:去分母;去括号;移项;合并同类项;系数化为1.行程问题:画图;距离=速度X时间;工程问题:工作量=工作效率X工时;比率问题:部分=全体X比率;顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;价格问题:售价=定价X折扣,利润=售价-成本解二元一次方程组的方法:(1)带入消元法:从一个方程中求出一个未知数的表达式,再把它带入另一个方程,进行求解的方法叫带入消元法。(2)加减消元法:把两个方程的两边分别相加或相减去掉一个未知数的方法叫加减消元法。第4章直线与角4.1多彩的几何图形4.2线段、射线、直线4.3线段的长短比较4.4角的表示与度量4.5角的大小比较4.6作线段与角几何图形的初步认识线段、射线、直线的概念和区分线段长短比较角的概念和认识角的度量和大小比较角平分线角和线段的作法点动成线,线动成面,面动成体。线段的比较方法:目测法;叠合法;度量法。经过两点有且只有一条直线。射线和线段是直线的一部分两点之间线段最短两角和等于90度,就说这两个角互余,即其中一个叫是另一个角的余角;两角和等于180度,就说这两个角互补,即其中一个角是另一个角的补角。掌握尺规作图的方法画角。第5章数据处理5.1数据的收集5.2数据的整理5.3统计图的选择5.4从图表中获取信息全面调查和抽样调查总体和个体样本和样本容量统计图表的认识和选择根据图表分析数据全面调查和抽样调查的特点,优劣性。总体和个体的区分。样本容量是样本中个体的数目简单随机抽样:在抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,这样的抽样方法叫简单随机抽样。统计图的特点:条形图:能清楚表示出事物的绝对数量;折线图:能清楚反应出事物的变化规律;扇形图:能清楚表示部分占总体的百分比。七年级下册目录知识点重难点实数6.1平方根、立方根6.2实数实数的概念和分类实数大小比较平方根和算术平方根立方根正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根算术平方根≥0恒成立正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法实数的运算(注意正负号)第7章一元一次不等式与不等式组7.1不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组不等式的概念不等式的解和解集一元一次不等式和一元一次不等式组的概念和解法不等式的3个基本性质用不等式解决实际问题1.不等式的解集与解的区别和联系:解集是范围是集合,解是值;解集包括解,所有的解组成了解集。2.不等式的性质:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。3.解一元一次不等式的步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.4.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。(同大取大、同小取小、大小小大中间找、大大小小则无解)5.特征解问解题步骤:把原式中的要求的量(简记为)当作已知数,去解原式—→得到原式的解(含)—→根据解的特征列出式子(关于的式子)—→解出的值。整式乘除与因式分解8.1幂的运算8.2整式乘法8.3平方差公式与完全平方公式8.4整式除法8.5因式分解幂的运算法则整式的乘法运算平方差公式完全平方公式同底数幂的除法法则整式的除法运算因式分解的3种方法分解因式的步骤公式;;;。(1)任何一个不等于零的数的零指数幂都等于1;(2)任何一个不等于零的数的-p(p为正整数)指数幂等于这个数的p指数幂的倒数。完全平方公式;平法差公式十字相乘法公式分式9.1分式及其基本性质9.2分式的运算9.3分式方程分式概念及其性质约分和通分分式的四则运算法则分式方程的定义解分式方程的一般步骤分式的性质(a,b,m都是整式,且)分式乘法法则分式除法法则分式乘方法则,分式的加减:(1)同分母(2)异分母解分式方程的步骤:分式方程整式方程解整式方程检验第10章相交线、平行线与平移10.1相交线10.2平行线的判定10.3平行线的性质10.4平移相交线(邻补角、对顶角)垂线及其性质、点到直线的距离平行线概念和平行公理同位角、内错角、同旁内角概念及其相互关系平行线判定及其性质平移和对应点在同一平面内,过一点有且仅有一条直线与已知直线垂直。在同一平面内,两条直线的关系不是相交就是平行,没有其他。在连接直线外一点与直线上各点的线段中,垂线段最短。两直线位置关系角的关系;角的关系两直线位置关系。平移性质:(1)一个图形和它经过平移后所得到的图形中,两组对应点连接的线段平行(或在同一直线上)且相等;(2)平移只改变图形的位置,不改变图形的大小和形状。频率分布11.1频数与频率11.2频数分布频数和频率的概念频数分布组距和组数三种统计图频数分布表的画法频数分布表,频数分布图(直方图,折线图)整理数据的步骤:(1)计算极差(极差=最大值-最小值);(2)决定组距和组数(当数据个数在100以内,一般分为5~12组,数据多分组,数据少分组少,若有的组内的频数为0时,则应放宽组距.组距=极差/组数);(3)决定分点(为了避免出现某一数据所在组不能确定的情况,应使分点比已知数据多一位小数,且把第一组的起点稍微放小);(4)画频数分布表。频率概率三种统计图的特点:条形统计图:能清楚地表示出事物的绝对数量;折线统计图:能清楚地反映事物的变化趋势;扇形统计图:能清楚地表示各部分占总体的百分率。八年级上册目录知识点重难点平面直角坐标系12.1平面上点的坐标12.2图形在坐标系中的平移平面内点的坐标特征对称点的坐标特征点到坐标轴的距离点的平移坐标变换规律各象限内点P(a,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0。(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0)点P(a,b)关于x轴的对称点是(a,-b);关于y轴的对称点是(-a,b);关于原点的对称点是(-a,-b)。点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣点平移规律:坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。简记为“右加左减,上加下减”一次函数13.1函数13.2一次函数13.3一次函数与一次方程、一次不等式13.4二元一次方程组的图象解法一次函数的概念和一般形式自变量的取值范围一次函数的图像和性质待定系数法确定解析式一次函数图像的平移一次函数与一次方程、一次不等式的关系二元一次方程组的图像解法一次函数一般形式:y=kx+b(k、b为常数,k≠0),当b=0时,y=kx(k≠0),此时y是x的正比例函数。待定系数法确定一次函数解析式,具体求法为:(1)设函数关系式为:y=kx+b;(2)代入x和y的两对对应值,得关于k、b的方程组;(3)解方程组,求出k和b。∣k∣决定直线的“平陡”。∣k∣越大,直线越陡(或越靠近y轴);∣k∣越小,直线越平(或越远离y轴)。直线上升,k>0;直线下降,k<0;b表示在y轴上的截距(截距无正负之分)。直线与y轴正半轴相交,b>0;直线与y轴负半轴相交,b<0。一次函数图像平移:设m>0,n>0(1)左右平移:直线y=kx+b向右(或向左)平移m个单位后的解析式为y=k(x-m)+b或y=k(x+m)+b。(2)上下平移:直线y=kx+b向上(或向下)平移n个单位后的解析式为y=kx+b+n或y=kx+b-n(说明:规律简记为“左加右减,上加下减”,左右对x而言,上下对y而言。)第14章三角形中的边角关系14.1三角形中的边角关系14.2命题与证明三角形的分类三角形的边角关系三角形的角分线、中线和高命题三角形中任何两边的和大于第三边;任何两边的差小于第三边。三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角。三角形的三内角平分线交点叫内心,即内接圆的圆心;三角形三条中线交点叫重心;三角形三条高的交点叫垂心;三角形三边中垂线的交点叫外心,即外接圆的圆心。目录知识点重难点全等三角形15.1全等三角形15.2三角形全等的判定全等三角形的性质全等三角形4条判定定理(SAS、ASA、AAS、SSS)直角三角形全等的判定全等三角形的对应边相等;对应角相等。“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。(SAS)“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。(ASA)“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)“边边边”定理:三边对应相等的两个三角形全等。(SSS)“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。(HL)第16章轴对称图形与等腰三角形16.1轴对称图形16.2线段的垂直平分线16.3等腰三角形16.4角的平分线轴对称图形和轴对称的性质线段的垂直平分线及其性质和判定等腰三角形及其性质和判定等边三角形及其性质和判定角平分线的性质和判定直角三角形的性质和判定如果两个图形关于某直线对称,那么对称轴垂直平分任意一对对应点的所连线段;如果两个图形各对对应点的所连线段被同一条直线垂直平分,那么这两个图形关于这条直线对称。垂直平分线性质:线段垂直平分线上的点与线段两端距离相等。判定:与线段两端距离相等的点在这条线段的垂直平分线上。等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一。角的平分线性质:角平分线上任意一点到角的两边的距离相等。判定:在一个角的内部,到角的两边的距离相等的点在这个角的平分线上。含30°角的直角三角形性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。勾股定理17.1勾股定理17.2勾股定理的逆定理勾股定理勾股定理的证明勾股定理的逆定理勾股定理及其逆定理的关系勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。勾股定理逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。确定三角形形状:(1)首先确定最大边,不妨设最长边长为c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形;若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形。八年级下册目录知识点重难点二次根式18.1二次根式18.2二次根式的运算二次根式的概念二次根式性质的几个结论二次根式的四则运算法则最简二次根式分母有理化因为负数没有平方根,所以是为二次根式的前提条件一个非负数的算术平方根的平方等于这个非负数。即()。一个数的平方的算术平方根等于这个数的绝对值,即最简二次根式不含有可化为平方数或平方式的因数或因式,最终结果分母不含根号。分母有理化的两种方法:分母是单项式,上下同乘分母;分母是多项式,利用平方差公式。一元二次方程19.1一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5一元二次方程的应用一元二次方程的一般形式一元二次方程的4种解法及其步骤(直接开平方法、公式法、配方法、因式分解法)根的判别式根与系数的关系一元二次方程解决实际问题一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2-4ac叫一元二次方程根的判别式:Δ>0,有两个不等的实根;Δ=0,有两个相等的实根;Δ<0,无实根。一元二次方程的根系关系:当ax2+bx+c=0(a≠0)时,如Δ≥0,有下列公式:一元二次方程的解法之因式分解法:提公因式分,平方公式,平方差,十字相乘法。一元二次方程的解法之公式法、配方法解题步骤。当ax2+bx+c=0(a≠0)时,有以下等价命题:两根互为相反数,b=0且Δ≥0;两根互为倒数,a=c且Δ≥0;只有一个零根,c=0且b≠0;有两个零根,c=0且b=0;至少有一个零根,c=0;两根异号,a、c异号;两根异号,正根绝对值大于负根绝对值,a、c异号且a、b异号;两根异号,负根绝对值大于正根绝对值,a、c异号且a、b同号;有两正根,a、c同号,a、b异号且Δ≥0;有两负根,a、c同号,a、b同号且Δ≥0.目录知识点重难点四边形20.1多边形内角和20.2平行四边形20.3矩形菱形正方形20.4梯形多边形内角和的算法平行四边形的性质和判定矩形的性质和判定菱形的性质和判定正方形的性质和判定平行四边形、矩形、正方形、菱形的区别和联系梯形的性质和判定名称定义性质判定面积平

形两组对边分别平行的四边形叫做平行四边形。①对边平行;②对边相等;

③对角相等;

④邻角互补;

⑤对角线互相平分;⑥是中心对称图形①定义;

②两组对边分别相等的四边形;③一组对边平行且相等的四边形;

④两组对角分别相等的四边形;

⑤对角线互相平分的四边形。S=ah(a为一边长,h为这条边上的高)矩

形有一个角是直角的平行四边形叫做矩形除具有平行四边形的性质外,还有:①四个角都是直角;②对角线相等;③既是中心对称图形又是轴对称图形。①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;③定义。S=ab(a为一边长,b为另一边长)菱

形有一组邻边相等的平行四边形叫做菱形。除具有平行四边形的性质外,还有①四边形相等;②对角线互相垂直,且每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。①四条边相等的四边形是菱形;②对角线垂直的平行四边形是菱形;③定义。①S=ah(a为一边长,h为这条边上的高);②(b、c为两条对角线的长)正

形有一组邻边相等且有一个角是直角的平行四边形叫做正方形具有平行四边形、矩形、菱形的性质:①四个角是直角,四条边相等;②对角线相等,互相垂直平分,每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。①有一组邻边相等的矩形是正方形;②有一个角是直角的菱形是正方形;③定义。①(a为边长);

②(b为对角线长)目录知识点重难点数据的集中趋势21.1平均数21.2中位数与众数21.3从部分看总体表示数据集中趋势的代表平均数众数中位数用样本平均数估计总体平均数平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。平均数:一组数据的总和除以这组数据的个数所得的商。众数:在一组数据中出现次数最多的数。中位数:将一组数据按照大小顺序排列,处在中间位置的数。第22章数据的离散程度22.1极差22.2方差、标准差表示数据离散趋势的代表极差方差标准差方差和平均数的关系用样本方差估计总体方差极差=最大值-最小值,一般来说,极差小,则说明数据的波动幅度小。各数据与它们的平均数的差的绝对值的平均数叫做这组数据的“平均差”。“平均差”越大,说明数据的离散程度越大。各数据与它们的平均数差的平方的和的平均数,来描述这组数据的离散程度,叫做这组数据的方差。方差的算术平方根叫做标准差。方差与平均数的性质:若x1,x2,…xn的方差是S2,平均数是,则有:①x1+b,x2+b…xn+b的方差为S2,平均数是+b;②ax1,ax2,…axn的方差为a2s2,平均数是a;③ax1+b,ax2+b,…axn+b的方差为a2s2,平均数是a+b。九年级上册目录知识点重难点第23章二次函数与反比例函数23.1二次函数23.2二次函数y=ax^2的图象和性质23.3二次函数y=ax^2+bx+c的图象和性质23.4二次函数与一元二次方程23.5.二次函数的应用23.6反比例函数二次函数的概念及其结构特征的图象和性质的图象和性质二次函数解析式的形式二次函数图像的平移步骤和规律二次函数图像和各项系数之间的关系二次函数和一元二次方程二次函数的应用反比例函数的图像和性质1.的性质:开口,对称轴,顶点坐标平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”。概括成八个字“左加右减,上加下减”。二次函数的性质:开口,对称轴,顶点坐标,增减性。当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。一般式、顶点式、两根式:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点时,抛物线的解析式才可以用交点式表示。a决定抛物线开口的大小和方向,a的正负决定开口方向,的大小决定开口的大小。在a确定的前提下,b决定抛物线对称轴位置,c决定抛物线与y轴交点的位置.二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中abc的符号,或由二次函数中abc的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母x的二次函数;目录知识点重难点第24章相似形24.1比例线段24.2相似三角形的判定24.3相似三角形的性质24.4相似多边形的性质24.5位似图形相似图形比例线段的概念比例的性质相似多边形相似三角形的概念相似三角形的基本定理和等价关系相似三角形的判定方法和性质位似图形的概念和性质画位似图形比例的基本性质:两外项的积等于两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论