【生物】蛋白质工程的原理和应用课件-2023-2024学年高二下学期生物人教版选择性必修3_第1页
【生物】蛋白质工程的原理和应用课件-2023-2024学年高二下学期生物人教版选择性必修3_第2页
【生物】蛋白质工程的原理和应用课件-2023-2024学年高二下学期生物人教版选择性必修3_第3页
【生物】蛋白质工程的原理和应用课件-2023-2024学年高二下学期生物人教版选择性必修3_第4页
【生物】蛋白质工程的原理和应用课件-2023-2024学年高二下学期生物人教版选择性必修3_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章基因工程第4节蛋白质工程的原理和应用授课教师:XXX选必三P93蛋白质的四级结构课标内容要求核心素养对接1.概述人们根据基因工程原理,进行蛋白质设计和改造,可以获得性状和功能符合人类要求的蛋白质。2.举例说明依据人类需要对原有蛋白质结构进行基因改造、生产目标蛋白的过程。1.生命观念:说明基因的碱基排列顺序—蛋白质的结构—蛋白质功能的关系。2.科学思维:尝试通过蛋白质工程技术,根据人类需要的蛋白质结构,设计改造某一蛋白质的设计流程。从社会中来

你见过用细菌画画吗?右图是用发出不同颜色荧光的细菌“画”的美妙图案。这些细菌能够发出荧光,是因为在它们的体内导入了荧光蛋白的基因。

最早被发现的荧光蛋白是绿色荧光蛋白,科学家通过改造它,获得了黄色荧光蛋白等。这些荧光蛋白在细胞内生命活动的检测、肿瘤的示踪研究等领域有着重要应用。那么,科学家是怎样对蛋白质分子进行设计和改造的呢?用细菌“画”的画用发出不同颜色荧光的细菌“西画”的美妙图案。这些细菌能够发出荧光,是因为在它们的体内导入了荧光蛋白的基因。

蛋白质工程的概念

蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过改造或合成基因,来改造现有蛋白质,或制造一种新的蛋白质,以满足人类生产和生活的需求。蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程。1.基础:蛋白质分子的结构规律及其与生物功能的关系2.操作方法及对象:改造或合成基因3.结果:改造现有蛋白质,或制造一种新的蛋白质4.目的:满足人类生产和生活的需求5.与基因工程的关系:6.相关学科及技术:分子生物学、晶体学和计算机技术基因工程与蛋白质工程的比较基因工程实质将一种生物的

转移到另一种生物体内,后者可以产生它本不能产生的

,进而表现出

。不足在原则上只能生产

。蛋白质工程天然蛋白质的不足天然蛋白质是生物在长期

过程中形成的,它们的结构和功能符合特定物种

的需要,却不一定完全符合人类生产和生活的需要。目的生产符合人类生产和生活的需要的蛋白质。基因蛋白质新性状自然界已存在的蛋白质即天然蛋白质进化生存一、蛋白质工程崛起的缘由实例1:玉米中赖氨酸含量较低,经人工设计改造,可使其叶片和种子中游离赖氨酸的含量分别提高5倍和2倍。赖氨酸合成调控赖氨酸达到一定浓度两种酶的活性352位的苏氨酸变成异亮氨酸二氢吡啶二羧酸合成酶天冬氨酸激酶+104位的天冬酰胺变成异亮氨酸赖氨酸含量抑制提高提高限制提高实例2:

干扰素(半胱氨酸)体外很难保存

干扰素(丝氨酸)体外可以保存半年改造改造蛋白质结构满足人类生产和生活的需要随堂练习

1、以下关于蛋白质工程的说法正确的是(

)A.蛋白质工程以基因工程为基础B.蛋白质工程就是用蛋白酶对蛋白质进行改造C.蛋白质工程只能生产天然的蛋白质D.蛋白质工程的实质是改造蛋白质A人类蛋白质组计划是继人类基因组计划之后,生命科学乃至自然科学领域重大的国际合作科研项目。2001年,国际人类蛋白质组组织宣布成立。2003年,该组织正式提出启动两项重大国际合作项目:一项是由中国科学家牵头执行的“人类肝脏蛋白质组计划”;另一项是由美国科学家牵头执行的“人类血浆蛋白质组计划”,由此拉开了人类蛋白质组计划的帷幕。【P93旁栏思考题】你知道人类蛋白质组计划吗?它与蛋白质工程有什么关系?我国科学家承担了什么任务?【P93旁栏思考题】你知道人类蛋白质组计划吗?它与蛋白质工程有什么关系?我国科学家承担了什么任务?“人类肝脏蛋白质组计划”是国际上第一个人类组织器官的蛋白质组计划,由我国贺福初院士牵头执行,这是中国科学家第一次牵头执行重大国际科研协作计划。它的目标是通过对肝脏蛋白质高通量、规模化的研究,解析肝脏蛋白质在生理、病理过程中的功能意义,为重大肝病的预防、诊断、治疗和新药的研发提供重要的科学依据。2010年,该计划“两谱、两图、三库”的目标初步实现。我国科学家完成了人类肝脏蛋白质组表达谱和修饰谱,绘制了蛋白质相互作用连锁图和定位图。“三库”是建立符合国际标准的肝脏标本库、发展规模化抗体制备技术并建立肝脏蛋白质抗体库和建立完整的肝脏蛋白质组数据库。人类蛋白质组计划取得的成果有力推动了蛋白质工程的发展,为它提供了重要的理论支持。2014年6月,中国人类蛋白质组计划启动。

对天然的蛋白质进行改造,你认为应该直接对蛋白质分子进行操作,还是通过对基因的操作来实现?1、基因决定蛋白质的合成,改造基因即为改造蛋白质;2、改造基因可以遗传,改造蛋白质无法遗传;3、改造基因比改造蛋白质更容易操作。蛋白质工程最终想要得到:生产符合人们生活需要的、自然界中没有的蛋白质1.目标:二、蛋白质工程的基本原理根据人们对蛋白质功能的特定需求,对蛋白质的结构进行设计改造。改造基因或合成基因2.方法:3.天然蛋白质合成过程:按照中心法则进行基因表达形成具有特定氨基酸序列的多肽链形成具有高级结构的蛋白质具有生物功能转录翻译逆中心法则

从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到并改变相对应的脱氧核苷酸序列(基因)或合成新的基因→获得所需要的蛋白质。4.

蛋白质工程思路:蛋白质工程的基本思路【资料补充与P94学科交叉】---蛋白质工程的主要步骤通常包括:(1)从生物体中分离纯化目的蛋白;(2)测定其氨基酸序列;(3)借助核磁共振和X射线晶体衍射等手段,尽可能地了解蛋白质的二维结构和三维晶体结构;(4)设计各种处理条件,了解蛋白质的结构变化,包括折叠与去折叠等对其活性与功能的影响;(5)设计编码该蛋白的基因改造方案,如点突变;(6)分离、纯化新蛋白,功能检测后投入实际使用。基因定点诱变技术的理解项目内容条件原料酶引物能量

ATP操作方法

PCR法结果适应范围后代中半数为诱变的DNA分子脱氧核苷酸DNA聚合酶和DNA连接酶含突变顺序的DNA分子片段空间结构完全清楚的蛋白质基因定点诱变技术的示意图思考:基因定点诱变技术与基因突变的比较比较基因定点诱变基因突变相同点发生的过程结果不同点场所手段方向DNA复制过程中产生新基因,从而产生新性状生物体外生物体内定向改造不定向性PCR技术物理化学方法讨论1.

怎样得出决定这一段肽链的脱氧核苷酸序列?请把相应的碱基序列写出来。某多肽链的一段氨基酸序列是:选必三P94思考·讨论:蛋白质工程基本思路的应用查密码子表得知:丙氨酸(GCU、GCC、GCA、GCG)、色氨酸(UGG)、赖氨酸(AAA、AAG)、谷氨酸(GAA、GAG)、苯丙氨酸(UUU、UUC)。mRNA序列为:GCU(或C或A或G)UGGAAA(或G)GAA(或G)UUU(或C)DNA序列为:CGA(或G或T或C)ACCTTT(或C)CTT(或C)AAA(或G)GCT(或C或A或G)TGGAAA(或G)GAA(或G)TTT(或C)讨论2.

确定目的基因的碱基序列后,怎样才能合成或改造目的基因?某多肽链的一段氨基酸序列是:选必三P94思考·讨论:蛋白质工程基本思路的应用

确定目的基因的碱基序列后,可以人工合成目的基因或从基因文库中获取目的基因。对基因的改造经常会用到基因定点突变技术来进行碱基的替换、增添等。项目蛋白质工程基因工程操作对象操作起点操作水平操作流程结果实质联系基因基因DNA分子水平DNA分子水平预期蛋白质功能→设计蛋白质结构→推测氨基酸序列→找到并改变对应的脱氧核苷酸序列(基因)或合成新基因→获得所需要的蛋白质目的基因的筛选与获取→构建基因表达载体→将目的基因导入受体细胞→目的基因的检测与鉴定可生产自然界没有的蛋白质生产自然界已有的蛋白质通过改造或合成基因来定向改造现有蛋白质或制造新的蛋白质(体外)基因重组。将一种生物的基因转移到另一种生物体内,后者可以产生它本不能产生的蛋白质,进而表现出新的性状①蛋白质工程是在基因工程基础上延伸出来的第二代基因工程;②蛋白质工程离不开基因工程,其包含基因工程的基本操作。预期蛋白质功能目的基因如何辨别一个操作是基因工程还是蛋白质工程?是否合成新的基因蛋白质工程是否对原有基因进行改造是否是否蛋白质工程基因工程二看蛋白质一看基因是否为天然蛋白质是否蛋白质工程基因工程方法ProAsp1.在医药工业方面的应用三、蛋白质工程的应用(1)研发速效胰岛素类似物天然蛋白质易形成二聚体或六聚体预期结构改造B28位脯氨酸替换为天冬氨酸或将它与B29位的赖氨酸交换位置新胰岛素基因转录mRNA折叠预期功能行使功能降低胰岛素的聚合作用设计结构改变B链第20~29位氨基酸组成推测序列翻译多肽链有效抑制胰岛素的聚合1.在医药工业方面的应用(2)延长干扰素体外保存时间天然干扰素不易保存预期结构改造一个半胱氨酸变成丝氨酸新干扰素基因转录mRNA折叠预期功能行使功能延长保存时间设计结构氨基酸替换推测序列翻译多肽链在-70℃下可以保存半年1.在医药工业方面的应用(3)改造抗体——降低人对小鼠单克隆抗体的免疫反应通过改造基因,将小鼠抗体上结合抗原的区域(即可变区)“嫁接”到人的抗体(即恒定区)上,经过这样改造的抗体诱发免疫反应的强度就会减低很多。小鼠单克隆抗体会使人体产生免疫反应,从而导致治疗效果大大降低医学问题:解决办法:人-鼠嵌合抗体,即抗体的可变区来自小(大)鼠McAb,而恒定区则来自人的抗体。这样的抗体既保持了原来McAb的特异性和亲和力,又大大减少了在人体内的免疫原性。1.在医药工业方面的应用(4)治癌酶的改造疱疹病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其它结构类似物磷酸化而使一些碱基3’-OH缺乏,从而阻断DNA的合成,杀死癌细胞。HSV—TK催化能力可以通过基因突变来提高。从大量的随机突变中进行筛选出一种酶,在酶活性部位附近有6个氨基酸被替换,催化能力提高20倍以上。1.在医药工业方面的应用(5)水蛭素改造水蛭素是水蛭唾液腺分泌的凝血酶特异抑制剂,它有多种变异体,由65或66个氨基酸残基组成。水蛭素在临床上可作为抗栓药物用于治疗血栓疾病。为提高水蛭素活性,在综合各变异体结构特点的基础上提出改造水蛭素主要变异体HV2的设计方案,将47位的Asn(天冬酰胺)变成Lys(赖氨酸),使其与分子内第4或第5位Thr(苏氨酸)间形成氢键来帮助水蛭素N端肽段的正确取向,从而提高凝血效率,试管试验活性提高4倍,在动物模型上检验抗血栓形成的效果,提高20倍。1.在医药工业方面的应用(6)生长激素改造生长激素通过对它特异受体的作用促进细胞和机体的生长发育,然而它不仅可以结合生长激素受体,还可以结合许多种不同类型细胞的催乳激素受体,引发其他生理过程。在治疗过程中为减少副作用,需使人的重组生长激素只与生长激素受体结合,尽可能减少与其他激素受体的结合。经研究发现,二者受体结合区有一部分重叠,但并不完全相同,有可能通过改造加以区别。由于人的生长激素和催乳激素受体结合需要锌离子参与作用,而它与生长激素受体结合则无需锌离子参与,于是考虑取代充当锌离子配基的氨基酸侧链,如第18和第21位His(组氨酸)和第17位Glu(谷氨酸)。实验结果与预先设想一致,但要开发作为临床用药还有大量的工作要做。2.在工业和农业等方面的应用(1)改进酶的性能或开发新的工业用酶

如枯草杆菌蛋白酶具有水解蛋白质的作用,常被用于洗涤剂工业、丝绸工业等。迄今为止,利用蛋白质工程获得的该酶的突变体已有上百种,从中可能筛选出一些符合工业化生产需求的突变体,从而提高这种酶的使用价值。(2)改造某些参与调控光合作用的酶,以提高植物光合作用的速率,增加粮食的产量(3)设计优良微生物农药,改造微生物蛋白质的结构,使它防治病虫害的效果增强;P95异想天开

能不能根据人类需要的蛋白质的结构,设计相应的基因,导入合适的宿主细胞中,让宿主细胞生产人类所需要的蛋白质食品呢?

理论上讲可以,但目前还没有真正成功的例子。利用改造后的动物细胞、微生物细胞等可以生产人类需要的蛋白质,但这些蛋白质往往都是自然界中已经存在的蛋白质,并非完全是人工设计出来的、自然界中不存在的蛋白质。主要原因是蛋白质的高级结构非常复杂,人类对大多数蛋白质的高级结构和蛋白质在生物体内如何行使功能了解得还不够,很难设计出一个全新的而又具有功能的蛋白质。即使设计并获得了一个全新的蛋白质,它的生理生化特性、用它生产的蛋白质食品的安全性等都需要长期深入的研究。蛋白质工程面临的困难:蛋白质工程是一项难度很大的工程;主要原因:

蛋白质发挥功能必须依赖于正确的高级结构,而这种高级结构往往十分复杂由计算机建立的血红蛋白三维结构模型

科学家要设计出更加符合人类需要的蛋白质,还需要不断地攻坚克难。随着科技的深入发展,蛋白质工程将会给人类带来更多的福祉。蛋白质工程的前景展望:蛋白质的二级结构:指蛋白质多肽链本身的折叠和盘绕的方式蛋白质的一级结构:氨基酸排列顺序蛋白质的三级结构:蛋白质分子处于它的天然折叠状态的三维构象蛋白质的四级结构:在体内有许多蛋白质含有2条或2条以上多肽链,才能全面地执行功能。每一条多肽链都有其完完整的三级结构,称为亚基蛋白质工程的应用及现状:①主要集中在对现有蛋白质进行改造,如干扰素、天冬氨酸激酶和二氢吡啶二羧酸合成酶等。②对创造新的蛋白质还有许多技术难题未突破,因为蛋白质发挥功能必须依赖于正确的高级结构。这种高级结构非常复杂,人们对此知之甚少。基因工程的应用及现状:①已被广泛应用,如转基因植物、动物、药品生产等已商业化。②基因治疗仅处于初期的临床试验阶段。酶制剂在食品工业、医药工业等方面都有广泛的应用。现在,酶制剂的生产已经形成一个市场可观的新兴产业。蛋白质工程的应用又为酶制剂产业的发展提供了强大助力。请查阅资料,了解我国酶制剂产业发展的现状和趋势,分析蛋白质工程在酶制剂产业中的作用。选必三P96到社会中去

酶用作工业催化剂,比无机催化剂具有更大的优越性,主要体现在以下几个方面。由于酶促反应能在常温、常压和中性pH条件下进行,因此可以节省大量的能源和设备投资;生产过程中不会造成严重的污染,符合环境保护的要求;生产过程简单、效率高,产品质量好,生产成本低。因此,酶制剂在工业领域得到了广泛的应用。

近年来,通过引进国外先进设备、优良菌种以及开发新型酶制剂,我国酶制剂产业保持了较快的增长态势,品种越来越丰富,产品的市场竞争力也在不断提升。2016年,我国工业酶制剂年产量达120万吨,年增长率保持在10%左右。在全球范围内,我国酶制剂的市场份额已占到了30%左右,我国进入酶制剂生产大国的行列。

在酶制剂产业中,蛋白质工程被广泛用于开发酶的新品种或改进酶的性能,如提高酶的热稳定性,增加某些被用作去污剂的酶的去污效率等。随堂练习

1.蛋白质工程中需要直接进行操作的对象是()A.氨基酸结构B.蛋白质空间结构C.肽链结构D.基因结构2.蛋白质工程在设计蛋白质结构时依据的是()A.基因功能B.蛋白质功能C.氨基酸序列D.mRNA密码子序列D提示:蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活需求。因此蛋白质工程最终还是要对基因进行改造。B提示:蛋白质工程依据蛋白质功能,设计蛋白质结构,再推测并合成相应的基因。一、概念检测1.蛋白质工程可以说是基因工程的延伸。判断下列相关表述是否正确。(1)基因工程需要在分子水平对基因进行操作,蛋白质工程不需要对基因进行操作。()(2)蛋白质工程需要改变蛋白质分子的所有氨基酸序列。()(3)蛋白质工程可以改造酶,提高酶的热稳定性。()练习与应用

(书本P96)2.蛋白质工程是在深入了解蛋白质分子的结构与功能关系的基础上进行的,它最终要达到的目的是()A.分析蛋白质的三维结构B.研究蛋白质的氨基酸组成C.获取编码蛋白质的基因序列信息D.改造现有蛋白质或制造新的蛋白质,满足人类的需求3.水蛭素是一种蛋白质,可用于预防和治疗血栓。研究人员发现,用赖氨酸替换水蛭素第47位的天冬酰胺可以提高它的抗凝血活性。在这项替换研究中,目前可行的直接操作对象是()A.基因B.氨基酸C.多肽链D.蛋白质练习与应用

(书本P127)DA

二、拓展应用T4溶菌酶是一种重要的工业用酶,但是它在温度较高时容易失去活性。为了提高T4溶菌酶的耐热性,科学家首先对影响T4溶菌酶耐热性的一些重要结构进行了研究。然后以此为依据对相关基因进行改造,使T4溶菌酶的第3位异亮氨酸变为半胱氨酸。于是,在该半胱氨酸与第97位的半胱氨酸之间形成了一个二硫键,T4溶菌酶的耐热性得到了提高。这项工作属于什么工程的范畴?在该实例中引起T4溶菌酶空间结构发生改变的根本原因是什么?如果要将该研究成果应用到生产实践,还需要做哪些方面的工作?【解析】这项工作属于蛋白质工程的范畴。引起T4溶菌酶空间结构发生改变的根本原因是基因的碱基序列发生了变化。如果要将改造后的T4溶菌酶应用于生产实践,还有很多工作需要做。例如,由于改造后酶的空间结构发生了变化,因此它的一些基本特性需要重新明确,包括它能耐受的温度范围、催化反应的最适温度、酶活力的大小等;需要建立规模化生产该酶的技术体系,评估生产成本等。1.某动物体内含有研究者感兴趣的目的基因,研究者欲将该基因导入大肠杆菌的质粒中保存。该质粒含有氨苄青霉素抗性基因(AmpR)、LacZ基因及一些酶切位点,其结构和简单的操作步骤如下图所示。请根据以上信息回答下列问题。(1)在第2步中,应怎样选择限制酶?(2)在第3步中,为了使质粒DNA与目的基因能连接,还需要在混合物中加入哪种物质?(3)选用含有AmpR和LacZ基因的质粒进行实验有哪些优势?(4)含有重组质粒的大肠杆菌菌落将呈现什么颜色?为什么?复习与提高

(书本P98)(1)在第2步中,应怎样选择限制酶?应选择用相同的限制酶或切割能产生相同末端的限制酶切割质粒和含有目的基因的DNA片段,并且注意限制酶的切割位点不能位于目的基因的内部,以防破坏目的基因,限制酶也不能破坏质粒的启动子、终止子、标记基因、复制原点等结构。(2)在第3步中,为了使质粒DNA与目的基因能连接,还需要在混合物中加入哪种物质?加入DNA连接酶。1.某动物体内含有研究者感兴趣的目的基因,研究者欲将该基因导入大肠杆菌的质粒中保存。该质粒含有氨苄青霉素抗性基因(AmpR)、LacZ基因及一些酶切位点。(3)选用含有AmpR和LacZ基因的质粒进行实验有哪些优势?该质粒便于进行双重筛选。标记基因AmpR基因可用于检测质粒是否导入了大肠杆菌,一般只有导入了质粒的大肠杆菌才能在添加了青霉素的培养基上生长。而由于LacZ基因的效应,这些生长的菌落可能出现两种颜色:含有空质粒(没有连接目的基因的质粒)的大肠杆菌菌落呈蓝色;含有重组质粒的大肠杆菌菌落呈白色。1.某动物体内含有研究者感兴趣的目的基因,研究者欲将该基因导入大肠杆菌的质粒中保存。该质粒含有氨苄青霉素抗性基因(AmpR)、LacZ基因及一些酶切位点,其结构和简单的操作步骤如下图所示。请根据以上信息回答下列问题。(4)含有重组质粒的大肠杆菌菌落将呈现什么颜色?为什么?含有重组质粒的大肠杆菌菌落呈白色。因为目的基因的插入破坏了LacZ基因的结构,使其不能正常表达,形成β-半乳糖苷酶,底物X-gal也就不会被分解。

2.科学家将Oct3/4、Sox2、c-Myc和Klf4基因通过逆转录病毒转入小鼠成纤维细胞中,然后在培养ES细胞的培养基上培养这些细胞。2〜3周后,这些细胞显示出ES细胞的形态、具有活跃的分裂能力,它们就是iPS细胞。请回答下列问题。(1)在这个实验过程中,逆转录病毒的作用是什么?(2)如何证明iPS细胞的产生不是由于培养基的作用?(3)如果要了解Oct3/4、Sox2、c-Myc和Klf4基因在诱导产生iPS细胞时,每个基因作用的相对大小,该如何进行实验?请你给出实验设计的思路。(4)若将病人的皮肤成纤维细胞诱导成iPS细胞,再使它转化为需要的细胞,用这些细胞给该病人治病,这是否会引起免疫排斥反应?为什么?iPS细胞具有分裂活性,用它进行治疗时可能存在什么风险?

2.科学家将Oct3/4、Sox2、c-Myc和Klf4基因通过逆转录病毒转入小鼠成纤维细胞中,然后在培养ES细胞的培养基上培养这些细胞。2〜3周后,这些细胞显示出ES细胞的形态、具有活跃的分裂能力,它们就是iPS细胞。请回答下列问题。(1)在这个实验过程中,逆转录病毒的作用是什么?(2)如何证明iPS细胞的产生不是由于培养基的作用?逆转录病毒是载体,能将外源基因Oct3/4、Sox2、c-Myc和K1f4送入小鼠成纤维细胞。可以设置对照组。将转入外源基因和没有转人外源基因的细胞分别培养在相同的培养基中,并确保其他培养条件相同。如果只有转入外源基因的细胞转化成了iPS细胞,就可以证明iPS细胞的产生不是由于培养基的作用。

2.科学家将Oct3/4、Sox2、c-Myc和Klf4基因通过逆转录病毒转入小鼠成纤维细胞中,然后在培养ES细胞的培养基上培养这些细胞。2〜3周后,这些细胞显示出ES细胞的形态、具有活跃的分裂能力,它们就是iPS细胞。请回答下列问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论