版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页改良hummers合成氧化石墨烯AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide
JiChen,BowenYao,ChunLi,GaoquanShi
*
DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina
ARTICLEINFOABSTRACT
Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022
AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.
2022ElsevierLtd.Allrightsreserved.
1.Introduction
Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istinnatureandweneedtoe*foliatethemfromtheirprecursors[7].Thee*foliationofgraphitetographenecanberealizedeitherphysicallyorchemically[1].Amongthevariousmethods,chemicalreductionofgrapheneo*ide(GO)toreducedgrapheneo*ide(rGO)isuniqueandattractivebecauseofitscapabilityofproducingsingle-layergrapheneinlargescaleandatrelativelylowcost[8].Furthermore,GOandrGOareprocessibleandtheycanbefabricatedorself-assem-bledintomacroscopicmaterialswithcontrolledcompositionsandmicrostructuresforpracticalapplications[9].
GOistheprecursorofrGO;thus,itplaysacrucialroleincontrollingthestructure,propertyandtheapplicationpoten-tialofrGO[1016].ThepioneeringworkonthesynthesisofGOwasreportedbyBrodiein1859[17].Inthismethod,one
equalweightofgraphitewasmi*edwiththreeequalweightsofKClO3andreactedinfumingHNO3at60Cfor4days.Sta-udenmaierimprovedBrodiemethodbyreplacingabouttwothirdsoffumingHNO3withconcentratedH2SO4andaddingKClO3inmultipleportions[18].Thissmallmodicationen-ablestheoverallreactioninasinglevessel;thussimplifyingthesynthesismethod.However,thisreactionstillneedsalongtimeof4days.ThemostimportantandwidelyappliedmethodforthesynthesisofGOwasdevelopedbyHummersandOffemanin1958(Hummersmethod)[19].Inthiscase,theo*idationofgraphitewasachievedbyharshtreatmentofoneequalweightofgraphitepowdersinaconcentratedH2SO4solutioncontainingthreeequalweightsofKMnO4and0.5equalweightofNaNO3.TheHummersmethod,atleast,hasthreeimportantadvantagesoverprevioustech-niques.First,thereactioncanbecompletedwithinafewhours.Second,KClO3wasreplacedbyKMnO4toimprovethereactionsafety,avoidingtheevolutionofe*plosiveClO2.Third,theuseofNaNO3insteadoffumingHNO3eliminatestheformationofacidfog.
Hummersmethodhasbeenpaidthemostintensiveatten-tionbecauseofitshighefciencyandsatisfyingreactionsafety.However,itstillhasthefollowingtwoaws:(1)theo*i-
*Correspondingauthor:Fa*:+861062771149.
E-mailaddress:gshi@(G.Shi).
0008-6223/$-seefrontmatter2022ElsevierLtd.Allrightsreserved./10.1016/j.carbon.2022.07.055
226
CARBON
64(2022)225–229
dationprocedurereleasesto*icgassessuchasNO2andN2O4;(2)theresidualNa+andNO3ionsaredifculttoberemovedfromthewastewaterformedfromtheprocessesofsynthe-sizingandpurifyingGO.Tourandco-workersimprovedtheHummersmethodbye*cludingNaNO3,increasingtheamountofKMnO4,andperformingthereactionina9:1(byvolume)mi*tureofH2SO4/H3PO4[20].Thismodicationissuccessfulinincreasingthereactionyieldandreducingto*icgasevolution,whileusingtwiceasmuchKMnO4and5.2timesasmuchH2SO4asthoserequiredbyHummersmethodandalsointroducinganewcomponentofH3PO4tothereactionsystem.
Recently,Baek’sgroupstudiedtheprocessofetchingthebasalplanesofhighlyorderedpyrolyticgraphite(HOPG)withahotmi*tureofH2SO4andHNO3[21].Inthiscase,thegraph-enelayersofHOPGwereeffectivelycutande*foliatedafteralong-termtreatment.ThisobservationindicatesthattheH2SO4/HNO3mi*tureusedinHummersmethodactsasachemical‘‘scissor’’andachemical‘‘drill’’forgrapheneplanestofacilitatethepenetrationofo*idationsolution.Ontheotherhand,KMnO4isoneofthestrongesto*idants,espe-ciallyinacidicmedia[22].WiththeassistanceofKMnO4,acompleteintercalationofgraphitewithconcentratedH2SO4canbeachieved,forminggraphitebisulfateinwhicheverysingle-layergrapheneissandwichedbythelayersofbisulfateions[23,24].ThiscompleteintercalationensurestheeffectivepenetrationofKMnO4solutionintographenelayersfortheo*idationofgraphite.Accordingly,KMnO4canalsotaketheroleofNaNO3andthelatterisunnecessaryforthesynthesisofGOusingHummersmethod.Inthisarticle,wedemon-stratethatGOcanbeproducedusinganimprovedHummersmethodwithoutusingNaNO3.ThismethoddecreasesthecostandenvironmentaldutyofGOproduction.
2.
E*perimental
2.1.
SynthesisandpuricationofGO
GOwaspreparedbytheo*idationofnaturalgraphitepowder(325mesh,QingdaoHuataiLubricantSealingSTCo.Ltd.,Qingdao,China)accordingtoHummersmethodwithamodi-cationofremovingNaNO3fromthereactionformula[19].Typically,graphitepowder(3.0g)wasaddedtoconcentratedH2SO4(70mL)understirringinanicebath.Undervigorousagitation,KMnO4(9.0g)wasaddedslowlytokeepthetemper-atureofthesuspensionlowerthan20C.Successively,thereactionsystemwastransferredtoa40Coilbathandvigor-ouslystirredforabout0.5h.Then,150mLwaterwasadded,andthesolutionwasstirredfor15minat95C.Additional500mLwaterwasaddedandfollowedbyaslowadditionof15mLH2O2(30%),turningthecolorofthesolutionfromdarkbrowntoyellow.Themi*turewaslteredandwashedwith1:10HClaqueoussolution(250mL)toremovemetalions.Theresultingsolidwasdriedinairanddilutedto600mL,makingagraphiteo*ideaqueousdispersion.Finally,itwaspuriedbydialysisforoneweekusingadialysismembrane(BeijingChemicalReagentCo.,China)withamolecularweightcutoffof800014,000gmol1toremovetheremainingmetalspecies.Theresultantgraphiteo*ideaqueousdispersionwas
thendilutedto1.2L,stirredovernightandsonicatedfor30mintoe*foliateittoGO.TheGOdispersionwasthencen-trifugedat3000rpmfor40mintoremovetheune*foliatedgraphite.Forcomparison,GOwasalsopreparedbyconven-tionalHummersmethod[19],andpuriedusingthesamepro-ceduresdescribedabove.TheGOproductspreparedbytheimprovedandconventionalHummersmethodsarenomi-natedasGO1orGO2,respectively.
2.2.Instrumentsandcharacterizations
GOdispersionswerefreeze-driedandusedformorphologicalandstructuralcharacterizations.Ramanspectrawerere-cordedonaRenishawRamanspectrometerwitha514nmla-seratapowerof4.7mW.*-rayphotoelectronspectra(*PS)wererecordedonanESCALAB250photoelectronspectrome-ter(ThermoFisherScientic)withAlKa(1486.6eV)asthe*-raysourcesetat150Wandapassenergyof30eVforhighresolutionscan.UV–visiblespectraweretakenoutbytheuseofaU-3010UV–visiblespectrometer(Hitachi,Japan).Scanningelectronmicrographs(SEM)weretakenoutonaeld-emissionscanningelectronmicroscope(Sirion-200,Ja-pan).Theatomicforcemicroscopic(AFM)imagesofGOsheetsweremeasuredusingascanningprobemicroscope(SPM-9600,Shimadzu).ThesamplesusedforSEMandAFMcharacterizationsweredepositedonsiliconwafersandmicasheets,respectively.Fouriertransforminfraredspectros-copy-attenuatedtotalreectance(FTIR-ATR)spectrawerere-cordedonaFouriertransforminfraredspectrometer(BrukerVerte*V70).ThezetapotentialsofGOaqueousdispersionsweremeasuredbytheuseofHORIBANanoparticleanalyzerSZ-100.*-raydiffraction(*RD)wascarriedoutonaD8Ad-vance*-raydiffractometerwithCuKaradiation(k=0.15418nm,Bruker,Germany).
2.3.
TheremovingofMn2+ionsfromwastewater
Typically,wastewaterwascollectedfromtheprocessofl-tratingGOfromthereactionsystemofimprovedHummersmethod.Successively,20mLofwastewaterwasdilutedandneutralizedbya0.2gmL1KOHsolution.ThepHofthesolu-tionwasadjustedto$10andaprecipitatewasformed.Then,thissystemwaskeptundisturbedovernighttoagetheprecip-itate.Finallythesedimentwasltrated.TheMn2+ionsinthepuriedwastewater(orltrate)wastestbyaddingitforsev-eraldropsintoa3mLaqueoussolutionofNa2S2O8(0.1gmL1)followedbyboilingthemi*turefor1min.
3.Resultsanddiscussion
GOsamplesweresynthesizedbyusingHummersmethodwithout(GO1)orwith(GO2)usingofNaNO3andpuriedbydialysisandcentrifugation.Theyields(theweightofGOdi-videdbytheweightofgraphitepowder)ofGO1andGO2weremeasuredtobe92%3%and96%2%,respectively.Thisre-sultindicatesthatthesolutionofconcentratedH2SO4con-tainingKMnO4iscapableofo*idizinggraphitetoGOinayieldclosetothatofHummersmethodevenwithouttheassistanceofNaNO3.
CARBON
64(2022)225–229
227
Thecomposition,structureandmorphologyofGO1werecharacterizedtobenearlythesametothoseofGO2.Fig.1aistheUV–visiblespectrumoftheaqueousdispersionofGO1.Thespectrumhasamainabsorptionpeakat232nmandashoulderpeakat300nm,whichareattributedtopp*tran-sitionofC@Cbondsandnp*transitionofC@Obonds,respectively.TheoverallfeatureofthisspectrumisidenticaltothatoftheGOsynthesizedusingconventionalHummersmethod(GO2,Fig.S1a)anditsadsorptionpeaksarealsosimilartothoseoftheGOsamplesreportedinliterature[20].ThedispersionofGO1showsaclearyellowcolor,indi-catingasuccessfulo*idationofgraphitetoGO[19].TheC/OatomicratiosofGO1(Fig.1b)andGO2(Fig.S1b)weremea-suredby*PStobe2.36and2.23,respectively,reectingtheirsimilardegreesofo*idation.Thesevaluesareamongtherangeof2.12.9fortheGOproductsreportedpreviously[19].TheC1sspectrumofGO1(Fig.1c)demonstratesfourtypesofcarbonbonds:C–C/C@C(284.6eV),C–O(286.6eV),C@O(287.8eV),andO–C@O(289.0eV).Thepeakintensitiesofintactcarbon(C–C/C@C)ando*ygenatedcarbonatomsinthis*PSspectrumwerecalculatedtobe47.9%and52.1%(Fig.1c),correspondingly.ThosevaluesinthespectrumofGO2weremeasuredtobe46.5%and53.5%,respectively(Fig.S1c).Thisresultfurtherconrmsthattheyhavecompa-rableo*idizationdegrees.Itshouldbenotedherethattheo*idationdegreesofGOproductsvarywiththeirsynthesisconditions[11,15,20].EitherGO1orGO2hasamediumo*i-dationdegreecomparedwiththoseofless[15]andhighlyo*idizedcounterparts[20].ThezetapotentialsofGO1andGO2suspensionsweremeasuredtobe43.81.3and45.60.6mV,respectively,indicatingtheyarenegativelychargedbecauseofthepresenceofcarbo*ylgroups.AlthoughGO1hasaslightlyhigherzetapotentialthanthatofGO2,itsvalueisstilllowerthan30mV,providingitwith
peakat2h=10.9(Fig.2c),correspondingtoad-spaceof0.81nm,andthisvalueisinconsistentwiththatoffreeze-driedGO2(Fig.S2c).ThelargeinterlayerspacingofGO1sheetscanbeattributedtoitso*ygenatedfunctionalgroupsintroducedbytheharsho*idationtreatmentofgraphite[26].
RamanandinfraredspectralstudiesalsodemonstratethatbothGOproductsarestructurallythesame.TheRamanspec-trumofGO1(Fig.2d)orGO2(Fig.S2d)showsaG-bandat$1590cm1andaD-bandat$1350cm1.TheG-bandisasso-ciatedwithgraphiticcarbonsandtheD-bandisrelatedtothestructuraldefectsorpartiallydisorderedgraphiticdomains[27].TheD-bandsinbothspectraarestrong,conrmingthelatticedistortionsofgraphenebasalplanes.Furthermore,theFTIRATRspectraofGO1andGO2papers(Fig.2eandS2e)showthefollowingcharacteristicfunctionalgroupsofGO[20,28]:COC($1000cm1),CO(1230cm1),C@C($1620cm1)andC@O(1740–1720cm1)bonds.TheOHstretchingvibrationsintheregionof3600–3300cm1areattributedtothehydro*ylandcarbo*ylgroupsofGOandresidualwaterbetweenGOsheets.Thesehydrophilico*y-gen-containingfunctionalgroupsprovideGOsheetswithagooddispersibilityinwater[9].
Thermalgravimetricanalysis(TGA)curvesofGO1andGO2arecomparedinFig.3.Bothcurvese*hibitsimilarcharacter-istics:theweightlossbefore100CiscausedbythereleaseoftrappedwaterbetweenGOsheets[28];thedistinctweightlossbetween200and230Cisattributedtothedecompositionoflessstableo*ygenatedfunctionalgroupsonGOsheets[29].Aweakermasslossintherangeof230–700Cisrelatedtotheremovalofmorestablefunctionalgroups.Thenearlyidenti-calTGAcurvesofbothGOsamplesreecttheirclosecontentsofo*ygenatedgroups.
Post-treatmentofthewastewatercollectedfromthepro-cessesofGOsynthesisandpuricationiscrucialforcommer-
tobeMn3O4containingasmallamountofMn(OH)2(Fig.5).TheefciencyofremovingMn2+ionsfromthewastewaterhasbeentestedbytheadditionofthepuriedsupernatant
3natesthegenerationofto*icgassesandsimpliestheproce-dureofpurifyingwasteliquid,thusdecreasesthecostofGOsynthesis.TheGOproductspreparedbyboththeimprovedandconventionalHummersmethodsarenearlythesamein
CARBON
64(2022)225–229
229
theirdispersibility,chemicalstructures,thicknesses,andlat-eraldimensions.Furthermore,thee*clusionofNaNO3doesnotaffecttheyieldoftheoverallreaction.TheimprovedHummersmethoddescribedherecanbeusedtoprepareGOinlargescaleanditisone-steptowardsthesynthesisofgrapheneanditsderivativesthroughenvironmentallyfriendlyapproaches.
Acknowledgements
ThisworkwassupportedbynationalbasicresearchprogramofChina(973Program,2022CB933402),naturalsciencefoun-dationofChina(91027028,51161120361,21274074).
Appendi*A.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.carbon.2022.07.055.
REFERENCES
[1]NovoselovKS,Fal’koVI,ColomboL,GellertPR,SchwabMG,
KimK.Aroadmapforgraphene.Nature2022;490(7419):192–200.
[2]WeissNO,ZhouH,LiaoL,LiuY,JiangS,HuangY,etal.
Graphene:anemergingelectronicmaterial.AdvMater2022;24(43):5782–825.
[3]HuangC,LiC,ShiG.Graphenebasedcatalysts.Energy
EnvironSci2022;5(10):8848–68.
[4]LiuY,Dong*,ChenP.Biologicalandchemicalsensorsbased
ongraphenematerials.ChemSocRev2022;41(6):2283–307.[5]SunY,WuQ,ShiG.Graphenebasednewenergymaterials.
EnergyEnvironSci2022;4(4):1113–32.
[6]WasseiJK,KanerRB.Oh,theplacesyou’llgowithgraphene.
AccChemRes2022./10.1021/ar300184v[7]SegalM.Sellinggraphenebytheton.NatNanotechnol
2022;4(10):612–4.
[8]BaiH,LiC,ShiG.Functionalcompositematerialsbasedon
chemicallyconvertedgraphene.AdvMater2022;23(9):1089–115.
[9]LiC,ShiG.Three-dimensionalgraphenearchitectures.
Nanoscale2022;4(18):5549–63.
[10]ZhuY,MuraliS,CaiW,Li*,SukJW,PottsJR,etal.Graphene
andgrapheneo*ide:synthesis,properties,andapplications.AdvMater2022;22(35):3906–24.
[11]WuZ-S,RenW,GaoL,LiuB,JiangC,ChengH-M.Synthesisof
high-qualitygraphenewithapre-determinednumberoflayers.Carbon2022;47(2):493–9.
[12]ZhangL,LiangJ,HuangY,MaY,WangY,ChenY.Size-controlledsynthesisofgrapheneo*idesheetsonalarge
scaleusingchemicale*foliation.Carbon2022;47(14):3365–8.
[13]
ZhangL,Li*,HuangY,MaY,Wan*,ChenY.Controlledsynthesisoffew-layeredgraphenesheetsonalargescaleusingchemicale*foliation.Carbon2022;48(8):2367–71.
[14]
ZhaoJ,PeiS,RenW,GaoL,ChengH-M.EfcientPreparationoflarge-areagrapheneo*idesheetsfortransparentconductivelms.ACSNano2022;4(9):5245–52.
[15]
*uY,ShengK,LiC,ShiG.Highlyconductivechemicallyconvertedgraphenepreparedfrommildlyo*idizedgrapheneo*ide.JMaterChem2022;21(20):7376–80.
[16]
LiY,UmerR,SamadYA,ZhengL,LiaoK.Theeffectoftheultrasonicationpre-treatmentofgrapheneo*ide(GO)onthemechanicalpropertiesofGO/polyvinylalcoholcomposites.Carbon2022;55:321–7.
[17]
BrodieBC.Ontheatomicweightofgraphite.PhilosTransRSocLondon1859;14:249–59.
[18]StaudenmaierL.VerfahrenzurDarstellungderGraphitsaure.BerDtschChemGes1898;31(2):1481–7.
[19]HummersWS,OffemanRE.Preparationofgraphitico*ide.JAmChemSoc1958;80(6):1339.
[20]
MarcanoDC,KosynkinDV,BerlinJM,SinitskiiA,SunZ,
SlesarevA,etal.Improvedsynthesisofgrapheneo*ide.ACSNano2022;4(8):4806–14.
[21]
ShinY-R,JungS-M,JeonI-Y,BaekJ-B.Theo*idation
mechanismofhighlyorderedpyrolyticgraphiteinanitricacid/sulfuricacidmi*ture.Carbon2022;52:493–8.
[22]
DreyerDR,ParkS,BielawskiCW,RuoffRS.Thechemistryofgrapheneo*ide.ChemSocRev2022;39(1):228–40.
[23]
AvdeevVV,MonyakinaLA,NikolskayaIV,SorokinaNE,SemenenkoKN.Thechoiceofo*idizersforgraphitehydrogenosulfatechemicalsynthesis.Carbon1992;30(6):819–23.
[24]
SorokinaNE,KhaskovMA,AvdeevVV,Nikol’skayaIV.ReactionofgraphitewithsulfuricacidinthepresenceofKMnO4.RussJGenChem2022;75(2):162–8.
[25]
LiD,MuellerMB,GiljeS,KanerRB,WallaceGG.Processableaqueousdispersionsofgraphenenanosheets.NatNanotechnol2022;3(2):101–5.
[26]
ChenC,YangQ-H,YangY,LvW,WenY,HouP-*,etal.Self-assembledfree-standinggraphiteo*idemembrane.AdvMater2022;21(29):3007–11.
[27]
KudinKN,OzbasB,SchnieppHC,Prud’hommeRK,AksayIA,CarR.Ramanspectraofgraphiteo*ideandfunctionalizedgraphenesheets.NanoLett2022;8(1):36–41.
[28]
EiglerS,DotzerC,HirschA,EnzelbergerM,MuellerP.
FormationanddecompositionofCO2intercalatedgrapheneo*ide.ChemMater2022;24(7):1276–82.
[29]
McAllisterMJ,LiJ-L,AdamsonDH,SchnieppHC,AbdalaAA,LiuJ,etal.Singlesheetfunctionalizedgraphenebyo*idationandthermale*pansionofgraphite.ChemMater2022;19(18):4396–404.
[30]
WorldHealthOrganization(WHO).ManganeseinDrinkingWater—BackgroundDocumentforDevelopmentofWHOGuidelinesforDrinking-WaterQuality.Geneva:WHO;2022.
AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide
JiChen,BowenYao,ChunLi,GaoquanShi
*
DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina
ARTICLEINFOABSTRACT
Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022
AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.
2022ElsevierLtd.Allrightsreserved.
1.Introduction
Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年品牌汽车短期无偿试用协议版B版
- 2024年度商务楼外墙维修工程承包合同一
- 2024年分公司组建合同样本合同书版B版
- 2024年国际人才引进聘用协议示例
- 2024年客户服务与维修保养协议版B版
- 2024年度企业收购协议样本版B版
- 2024年度全面虫控解决方案协议版B版
- 2024年度固定价进口原材料采购合同版B版
- 2024年度个人对个人健身教练服务合同3篇
- 2024年家装水电安装质量承包协议
- 四川省对口高职升学考试信息技术一类综合试卷试题一
- 仿制药质量和疗效一致性评价工作介绍课件
- 联想供应链智能决策技术白皮书 全文
- 2023年商丘师范学院辅导员招聘考试笔试题库及答案解析
- 人教版新课程高中化学必修一第三章《铁-金属材料-》教材分析课件
- 五年级上册语文课件-23《鸟的天堂》第二课时 人教(部编版)(共28张PPT)
- 居民健康档案个人信息表
- 发作性运动障碍课件
- 《乡土中国》之《名实的分离》-统编版高中语文必修上册
- 六星级心态课件
- 按摩手法治疗培训课件
评论
0/150
提交评论