版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页改良hummers合成氧化石墨烯AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide
JiChen,BowenYao,ChunLi,GaoquanShi
*
DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina
ARTICLEINFOABSTRACT
Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022
AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.
2022ElsevierLtd.Allrightsreserved.
1.Introduction
Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istinnatureandweneedtoe*foliatethemfromtheirprecursors[7].Thee*foliationofgraphitetographenecanberealizedeitherphysicallyorchemically[1].Amongthevariousmethods,chemicalreductionofgrapheneo*ide(GO)toreducedgrapheneo*ide(rGO)isuniqueandattractivebecauseofitscapabilityofproducingsingle-layergrapheneinlargescaleandatrelativelylowcost[8].Furthermore,GOandrGOareprocessibleandtheycanbefabricatedorself-assem-bledintomacroscopicmaterialswithcontrolledcompositionsandmicrostructuresforpracticalapplications[9].
GOistheprecursorofrGO;thus,itplaysacrucialroleincontrollingthestructure,propertyandtheapplicationpoten-tialofrGO[1016].ThepioneeringworkonthesynthesisofGOwasreportedbyBrodiein1859[17].Inthismethod,one
equalweightofgraphitewasmi*edwiththreeequalweightsofKClO3andreactedinfumingHNO3at60Cfor4days.Sta-udenmaierimprovedBrodiemethodbyreplacingabouttwothirdsoffumingHNO3withconcentratedH2SO4andaddingKClO3inmultipleportions[18].Thissmallmodicationen-ablestheoverallreactioninasinglevessel;thussimplifyingthesynthesismethod.However,thisreactionstillneedsalongtimeof4days.ThemostimportantandwidelyappliedmethodforthesynthesisofGOwasdevelopedbyHummersandOffemanin1958(Hummersmethod)[19].Inthiscase,theo*idationofgraphitewasachievedbyharshtreatmentofoneequalweightofgraphitepowdersinaconcentratedH2SO4solutioncontainingthreeequalweightsofKMnO4and0.5equalweightofNaNO3.TheHummersmethod,atleast,hasthreeimportantadvantagesoverprevioustech-niques.First,thereactioncanbecompletedwithinafewhours.Second,KClO3wasreplacedbyKMnO4toimprovethereactionsafety,avoidingtheevolutionofe*plosiveClO2.Third,theuseofNaNO3insteadoffumingHNO3eliminatestheformationofacidfog.
Hummersmethodhasbeenpaidthemostintensiveatten-tionbecauseofitshighefciencyandsatisfyingreactionsafety.However,itstillhasthefollowingtwoaws:(1)theo*i-
*Correspondingauthor:Fa*:+861062771149.
E-mailaddress:gshi@(G.Shi).
0008-6223/$-seefrontmatter2022ElsevierLtd.Allrightsreserved./10.1016/j.carbon.2022.07.055
226
CARBON
64(2022)225–229
dationprocedurereleasesto*icgassessuchasNO2andN2O4;(2)theresidualNa+andNO3ionsaredifculttoberemovedfromthewastewaterformedfromtheprocessesofsynthe-sizingandpurifyingGO.Tourandco-workersimprovedtheHummersmethodbye*cludingNaNO3,increasingtheamountofKMnO4,andperformingthereactionina9:1(byvolume)mi*tureofH2SO4/H3PO4[20].Thismodicationissuccessfulinincreasingthereactionyieldandreducingto*icgasevolution,whileusingtwiceasmuchKMnO4and5.2timesasmuchH2SO4asthoserequiredbyHummersmethodandalsointroducinganewcomponentofH3PO4tothereactionsystem.
Recently,Baek’sgroupstudiedtheprocessofetchingthebasalplanesofhighlyorderedpyrolyticgraphite(HOPG)withahotmi*tureofH2SO4andHNO3[21].Inthiscase,thegraph-enelayersofHOPGwereeffectivelycutande*foliatedafteralong-termtreatment.ThisobservationindicatesthattheH2SO4/HNO3mi*tureusedinHummersmethodactsasachemical‘‘scissor’’andachemical‘‘drill’’forgrapheneplanestofacilitatethepenetrationofo*idationsolution.Ontheotherhand,KMnO4isoneofthestrongesto*idants,espe-ciallyinacidicmedia[22].WiththeassistanceofKMnO4,acompleteintercalationofgraphitewithconcentratedH2SO4canbeachieved,forminggraphitebisulfateinwhicheverysingle-layergrapheneissandwichedbythelayersofbisulfateions[23,24].ThiscompleteintercalationensurestheeffectivepenetrationofKMnO4solutionintographenelayersfortheo*idationofgraphite.Accordingly,KMnO4canalsotaketheroleofNaNO3andthelatterisunnecessaryforthesynthesisofGOusingHummersmethod.Inthisarticle,wedemon-stratethatGOcanbeproducedusinganimprovedHummersmethodwithoutusingNaNO3.ThismethoddecreasesthecostandenvironmentaldutyofGOproduction.
2.
E*perimental
2.1.
SynthesisandpuricationofGO
GOwaspreparedbytheo*idationofnaturalgraphitepowder(325mesh,QingdaoHuataiLubricantSealingSTCo.Ltd.,Qingdao,China)accordingtoHummersmethodwithamodi-cationofremovingNaNO3fromthereactionformula[19].Typically,graphitepowder(3.0g)wasaddedtoconcentratedH2SO4(70mL)understirringinanicebath.Undervigorousagitation,KMnO4(9.0g)wasaddedslowlytokeepthetemper-atureofthesuspensionlowerthan20C.Successively,thereactionsystemwastransferredtoa40Coilbathandvigor-ouslystirredforabout0.5h.Then,150mLwaterwasadded,andthesolutionwasstirredfor15minat95C.Additional500mLwaterwasaddedandfollowedbyaslowadditionof15mLH2O2(30%),turningthecolorofthesolutionfromdarkbrowntoyellow.Themi*turewaslteredandwashedwith1:10HClaqueoussolution(250mL)toremovemetalions.Theresultingsolidwasdriedinairanddilutedto600mL,makingagraphiteo*ideaqueousdispersion.Finally,itwaspuriedbydialysisforoneweekusingadialysismembrane(BeijingChemicalReagentCo.,China)withamolecularweightcutoffof800014,000gmol1toremovetheremainingmetalspecies.Theresultantgraphiteo*ideaqueousdispersionwas
thendilutedto1.2L,stirredovernightandsonicatedfor30mintoe*foliateittoGO.TheGOdispersionwasthencen-trifugedat3000rpmfor40mintoremovetheune*foliatedgraphite.Forcomparison,GOwasalsopreparedbyconven-tionalHummersmethod[19],andpuriedusingthesamepro-ceduresdescribedabove.TheGOproductspreparedbytheimprovedandconventionalHummersmethodsarenomi-natedasGO1orGO2,respectively.
2.2.Instrumentsandcharacterizations
GOdispersionswerefreeze-driedandusedformorphologicalandstructuralcharacterizations.Ramanspectrawerere-cordedonaRenishawRamanspectrometerwitha514nmla-seratapowerof4.7mW.*-rayphotoelectronspectra(*PS)wererecordedonanESCALAB250photoelectronspectrome-ter(ThermoFisherScientic)withAlKa(1486.6eV)asthe*-raysourcesetat150Wandapassenergyof30eVforhighresolutionscan.UV–visiblespectraweretakenoutbytheuseofaU-3010UV–visiblespectrometer(Hitachi,Japan).Scanningelectronmicrographs(SEM)weretakenoutonaeld-emissionscanningelectronmicroscope(Sirion-200,Ja-pan).Theatomicforcemicroscopic(AFM)imagesofGOsheetsweremeasuredusingascanningprobemicroscope(SPM-9600,Shimadzu).ThesamplesusedforSEMandAFMcharacterizationsweredepositedonsiliconwafersandmicasheets,respectively.Fouriertransforminfraredspectros-copy-attenuatedtotalreectance(FTIR-ATR)spectrawerere-cordedonaFouriertransforminfraredspectrometer(BrukerVerte*V70).ThezetapotentialsofGOaqueousdispersionsweremeasuredbytheuseofHORIBANanoparticleanalyzerSZ-100.*-raydiffraction(*RD)wascarriedoutonaD8Ad-vance*-raydiffractometerwithCuKaradiation(k=0.15418nm,Bruker,Germany).
2.3.
TheremovingofMn2+ionsfromwastewater
Typically,wastewaterwascollectedfromtheprocessofl-tratingGOfromthereactionsystemofimprovedHummersmethod.Successively,20mLofwastewaterwasdilutedandneutralizedbya0.2gmL1KOHsolution.ThepHofthesolu-tionwasadjustedto$10andaprecipitatewasformed.Then,thissystemwaskeptundisturbedovernighttoagetheprecip-itate.Finallythesedimentwasltrated.TheMn2+ionsinthepuriedwastewater(orltrate)wastestbyaddingitforsev-eraldropsintoa3mLaqueoussolutionofNa2S2O8(0.1gmL1)followedbyboilingthemi*turefor1min.
3.Resultsanddiscussion
GOsamplesweresynthesizedbyusingHummersmethodwithout(GO1)orwith(GO2)usingofNaNO3andpuriedbydialysisandcentrifugation.Theyields(theweightofGOdi-videdbytheweightofgraphitepowder)ofGO1andGO2weremeasuredtobe92%3%and96%2%,respectively.Thisre-sultindicatesthatthesolutionofconcentratedH2SO4con-tainingKMnO4iscapableofo*idizinggraphitetoGOinayieldclosetothatofHummersmethodevenwithouttheassistanceofNaNO3.
CARBON
64(2022)225–229
227
Thecomposition,structureandmorphologyofGO1werecharacterizedtobenearlythesametothoseofGO2.Fig.1aistheUV–visiblespectrumoftheaqueousdispersionofGO1.Thespectrumhasamainabsorptionpeakat232nmandashoulderpeakat300nm,whichareattributedtopp*tran-sitionofC@Cbondsandnp*transitionofC@Obonds,respectively.TheoverallfeatureofthisspectrumisidenticaltothatoftheGOsynthesizedusingconventionalHummersmethod(GO2,Fig.S1a)anditsadsorptionpeaksarealsosimilartothoseoftheGOsamplesreportedinliterature[20].ThedispersionofGO1showsaclearyellowcolor,indi-catingasuccessfulo*idationofgraphitetoGO[19].TheC/OatomicratiosofGO1(Fig.1b)andGO2(Fig.S1b)weremea-suredby*PStobe2.36and2.23,respectively,reectingtheirsimilardegreesofo*idation.Thesevaluesareamongtherangeof2.12.9fortheGOproductsreportedpreviously[19].TheC1sspectrumofGO1(Fig.1c)demonstratesfourtypesofcarbonbonds:C–C/C@C(284.6eV),C–O(286.6eV),C@O(287.8eV),andO–C@O(289.0eV).Thepeakintensitiesofintactcarbon(C–C/C@C)ando*ygenatedcarbonatomsinthis*PSspectrumwerecalculatedtobe47.9%and52.1%(Fig.1c),correspondingly.ThosevaluesinthespectrumofGO2weremeasuredtobe46.5%and53.5%,respectively(Fig.S1c).Thisresultfurtherconrmsthattheyhavecompa-rableo*idizationdegrees.Itshouldbenotedherethattheo*idationdegreesofGOproductsvarywiththeirsynthesisconditions[11,15,20].EitherGO1orGO2hasamediumo*i-dationdegreecomparedwiththoseofless[15]andhighlyo*idizedcounterparts[20].ThezetapotentialsofGO1andGO2suspensionsweremeasuredtobe43.81.3and45.60.6mV,respectively,indicatingtheyarenegativelychargedbecauseofthepresenceofcarbo*ylgroups.AlthoughGO1hasaslightlyhigherzetapotentialthanthatofGO2,itsvalueisstilllowerthan30mV,providingitwith
peakat2h=10.9(Fig.2c),correspondingtoad-spaceof0.81nm,andthisvalueisinconsistentwiththatoffreeze-driedGO2(Fig.S2c).ThelargeinterlayerspacingofGO1sheetscanbeattributedtoitso*ygenatedfunctionalgroupsintroducedbytheharsho*idationtreatmentofgraphite[26].
RamanandinfraredspectralstudiesalsodemonstratethatbothGOproductsarestructurallythesame.TheRamanspec-trumofGO1(Fig.2d)orGO2(Fig.S2d)showsaG-bandat$1590cm1andaD-bandat$1350cm1.TheG-bandisasso-ciatedwithgraphiticcarbonsandtheD-bandisrelatedtothestructuraldefectsorpartiallydisorderedgraphiticdomains[27].TheD-bandsinbothspectraarestrong,conrmingthelatticedistortionsofgraphenebasalplanes.Furthermore,theFTIRATRspectraofGO1andGO2papers(Fig.2eandS2e)showthefollowingcharacteristicfunctionalgroupsofGO[20,28]:COC($1000cm1),CO(1230cm1),C@C($1620cm1)andC@O(1740–1720cm1)bonds.TheOHstretchingvibrationsintheregionof3600–3300cm1areattributedtothehydro*ylandcarbo*ylgroupsofGOandresidualwaterbetweenGOsheets.Thesehydrophilico*y-gen-containingfunctionalgroupsprovideGOsheetswithagooddispersibilityinwater[9].
Thermalgravimetricanalysis(TGA)curvesofGO1andGO2arecomparedinFig.3.Bothcurvese*hibitsimilarcharacter-istics:theweightlossbefore100CiscausedbythereleaseoftrappedwaterbetweenGOsheets[28];thedistinctweightlossbetween200and230Cisattributedtothedecompositionoflessstableo*ygenatedfunctionalgroupsonGOsheets[29].Aweakermasslossintherangeof230–700Cisrelatedtotheremovalofmorestablefunctionalgroups.Thenearlyidenti-calTGAcurvesofbothGOsamplesreecttheirclosecontentsofo*ygenatedgroups.
Post-treatmentofthewastewatercollectedfromthepro-cessesofGOsynthesisandpuricationiscrucialforcommer-
tobeMn3O4containingasmallamountofMn(OH)2(Fig.5).TheefciencyofremovingMn2+ionsfromthewastewaterhasbeentestedbytheadditionofthepuriedsupernatant
3natesthegenerationofto*icgassesandsimpliestheproce-dureofpurifyingwasteliquid,thusdecreasesthecostofGOsynthesis.TheGOproductspreparedbyboththeimprovedandconventionalHummersmethodsarenearlythesamein
CARBON
64(2022)225–229
229
theirdispersibility,chemicalstructures,thicknesses,andlat-eraldimensions.Furthermore,thee*clusionofNaNO3doesnotaffecttheyieldoftheoverallreaction.TheimprovedHummersmethoddescribedherecanbeusedtoprepareGOinlargescaleanditisone-steptowardsthesynthesisofgrapheneanditsderivativesthroughenvironmentallyfriendlyapproaches.
Acknowledgements
ThisworkwassupportedbynationalbasicresearchprogramofChina(973Program,2022CB933402),naturalsciencefoun-dationofChina(91027028,51161120361,21274074).
Appendi*A.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.carbon.2022.07.055.
REFERENCES
[1]NovoselovKS,Fal’koVI,ColomboL,GellertPR,SchwabMG,
KimK.Aroadmapforgraphene.Nature2022;490(7419):192–200.
[2]WeissNO,ZhouH,LiaoL,LiuY,JiangS,HuangY,etal.
Graphene:anemergingelectronicmaterial.AdvMater2022;24(43):5782–825.
[3]HuangC,LiC,ShiG.Graphenebasedcatalysts.Energy
EnvironSci2022;5(10):8848–68.
[4]LiuY,Dong*,ChenP.Biologicalandchemicalsensorsbased
ongraphenematerials.ChemSocRev2022;41(6):2283–307.[5]SunY,WuQ,ShiG.Graphenebasednewenergymaterials.
EnergyEnvironSci2022;4(4):1113–32.
[6]WasseiJK,KanerRB.Oh,theplacesyou’llgowithgraphene.
AccChemRes2022./10.1021/ar300184v[7]SegalM.Sellinggraphenebytheton.NatNanotechnol
2022;4(10):612–4.
[8]BaiH,LiC,ShiG.Functionalcompositematerialsbasedon
chemicallyconvertedgraphene.AdvMater2022;23(9):1089–115.
[9]LiC,ShiG.Three-dimensionalgraphenearchitectures.
Nanoscale2022;4(18):5549–63.
[10]ZhuY,MuraliS,CaiW,Li*,SukJW,PottsJR,etal.Graphene
andgrapheneo*ide:synthesis,properties,andapplications.AdvMater2022;22(35):3906–24.
[11]WuZ-S,RenW,GaoL,LiuB,JiangC,ChengH-M.Synthesisof
high-qualitygraphenewithapre-determinednumberoflayers.Carbon2022;47(2):493–9.
[12]ZhangL,LiangJ,HuangY,MaY,WangY,ChenY.Size-controlledsynthesisofgrapheneo*idesheetsonalarge
scaleusingchemicale*foliation.Carbon2022;47(14):3365–8.
[13]
ZhangL,Li*,HuangY,MaY,Wan*,ChenY.Controlledsynthesisoffew-layeredgraphenesheetsonalargescaleusingchemicale*foliation.Carbon2022;48(8):2367–71.
[14]
ZhaoJ,PeiS,RenW,GaoL,ChengH-M.EfcientPreparationoflarge-areagrapheneo*idesheetsfortransparentconductivelms.ACSNano2022;4(9):5245–52.
[15]
*uY,ShengK,LiC,ShiG.Highlyconductivechemicallyconvertedgraphenepreparedfrommildlyo*idizedgrapheneo*ide.JMaterChem2022;21(20):7376–80.
[16]
LiY,UmerR,SamadYA,ZhengL,LiaoK.Theeffectoftheultrasonicationpre-treatmentofgrapheneo*ide(GO)onthemechanicalpropertiesofGO/polyvinylalcoholcomposites.Carbon2022;55:321–7.
[17]
BrodieBC.Ontheatomicweightofgraphite.PhilosTransRSocLondon1859;14:249–59.
[18]StaudenmaierL.VerfahrenzurDarstellungderGraphitsaure.BerDtschChemGes1898;31(2):1481–7.
[19]HummersWS,OffemanRE.Preparationofgraphitico*ide.JAmChemSoc1958;80(6):1339.
[20]
MarcanoDC,KosynkinDV,BerlinJM,SinitskiiA,SunZ,
SlesarevA,etal.Improvedsynthesisofgrapheneo*ide.ACSNano2022;4(8):4806–14.
[21]
ShinY-R,JungS-M,JeonI-Y,BaekJ-B.Theo*idation
mechanismofhighlyorderedpyrolyticgraphiteinanitricacid/sulfuricacidmi*ture.Carbon2022;52:493–8.
[22]
DreyerDR,ParkS,BielawskiCW,RuoffRS.Thechemistryofgrapheneo*ide.ChemSocRev2022;39(1):228–40.
[23]
AvdeevVV,MonyakinaLA,NikolskayaIV,SorokinaNE,SemenenkoKN.Thechoiceofo*idizersforgraphitehydrogenosulfatechemicalsynthesis.Carbon1992;30(6):819–23.
[24]
SorokinaNE,KhaskovMA,AvdeevVV,Nikol’skayaIV.ReactionofgraphitewithsulfuricacidinthepresenceofKMnO4.RussJGenChem2022;75(2):162–8.
[25]
LiD,MuellerMB,GiljeS,KanerRB,WallaceGG.Processableaqueousdispersionsofgraphenenanosheets.NatNanotechnol2022;3(2):101–5.
[26]
ChenC,YangQ-H,YangY,LvW,WenY,HouP-*,etal.Self-assembledfree-standinggraphiteo*idemembrane.AdvMater2022;21(29):3007–11.
[27]
KudinKN,OzbasB,SchnieppHC,Prud’hommeRK,AksayIA,CarR.Ramanspectraofgraphiteo*ideandfunctionalizedgraphenesheets.NanoLett2022;8(1):36–41.
[28]
EiglerS,DotzerC,HirschA,EnzelbergerM,MuellerP.
FormationanddecompositionofCO2intercalatedgrapheneo*ide.ChemMater2022;24(7):1276–82.
[29]
McAllisterMJ,LiJ-L,AdamsonDH,SchnieppHC,AbdalaAA,LiuJ,etal.Singlesheetfunctionalizedgraphenebyo*idationandthermale*pansionofgraphite.ChemMater2022;19(18):4396–404.
[30]
WorldHealthOrganization(WHO).ManganeseinDrinkingWater—BackgroundDocumentforDevelopmentofWHOGuidelinesforDrinking-WaterQuality.Geneva:WHO;2022.
AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide
JiChen,BowenYao,ChunLi,GaoquanShi
*
DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina
ARTICLEINFOABSTRACT
Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022
AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.
2022ElsevierLtd.Allrightsreserved.
1.Introduction
Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 武汉商学院《有机化学A(1)》2023-2024学年第一学期期末试卷
- 2024销售公司产品销售权承包合同3篇
- 上海交通职业技术学院《医学细胞生物学和遗传学》2023-2024学年第一学期期末试卷
- 2025年度车辆租赁行业信用评价合同3篇
- 宿舍楼应急照明与疏散指示系统应用效果评估
- 2024汽车租赁的合同
- 中医药在寒冷气候下的应用
- 读一本好书演讲稿6篇
- 2024高考地理一轮复习第十七单元区域经济发展练习含解析
- 2024高考地理一轮复习限时规范特训22人口的空间变化含解析新人教版
- 闽教版2023版3-6年级全8册英语单词表
- 医院耗材述职报告
- 胆管结石的健康宣教课件
- 实验报告抑菌结果分析
- 华为财务分析报告
- 快速出具旧机动车评估报告
- 客户服务活动方案
- 临床检验血液学配套试题及答案2-13及临床路径试题
- 人员保有培训课件
- 水上抛石安全专项施工方案
- 台大欧丽娟《红楼梦》公开课全部笔记
评论
0/150
提交评论