版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市教育局教研究室重点名校2024年中考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.一个游戏的中奖概率是110B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8,8,7,10,6,8,9的众数和中位数都是8D.若甲组数据的方差S="0.01",乙组数据的方差s=0.1,则乙组数据比甲组数据稳定2.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为()A.62° B.56° C.60° D.28°3.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF4.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是155.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A. B.π C.50 D.50π6.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. D.7.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90° B.OE=BE C.BD=BC D.8.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.9.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似10.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.12.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.13.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.14.一个正多边形的一个外角为30°,则它的内角和为_____.15.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.16.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.三、解答题(共8题,共72分)17.(8分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.18.(8分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)19.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.20.(8分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.21.(8分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.22.(10分)已知:如图,,,.求证:.23.(12分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.24.如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.2、A【解析】
连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A3、B【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4、C【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.5、A【解析】
根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.【详解】解:圆锥的侧面积=•5•5=.故选A.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6、B【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.7、B【解析】
根据垂径定理及圆周角定理进行解答即可.【详解】∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴,∴BD=BC,故C正确;∴,故D正确.故选B.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8、C【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.9、B【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.10、A【解析】
根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.【详解】依题意得:.故选A.【点睛】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、填空题(本大题共6个小题,每小题3分,共18分)11、25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.12、1.【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴44+x=1解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.13、【解析】
根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.14、1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.15、70°.【解析】
由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.16、0.80【解析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.三、解答题(共8题,共72分)17、(1)详见解析;(2)OF=.【解析】
(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.18、33.3【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.【详解】解:∵AC====∴矩形面积=10≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.19、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】
(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.20、(1)证明见解析;(2)MC=.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【详解】(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.21、见解析【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22、见解析【解析】
先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【详解】证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS).
∴BC=DE.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.23、(1)A(4,0),C(3,﹣3);(2)m=;(3)E点的坐标为(2,0)或(,0)或(0,﹣4);【解析】
方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标,进而可得到点C的坐标;(2)先用m表示出P,AC三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况,利用勾股定理即可求得m的值;(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2)由△ACP为直角三角形,由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.【详解】方法一:解:(1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,∴对称轴x=2,令y=0,则x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,则y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵抛物线y=x2﹣2mx(m>1),∴A(2m,0)对称轴x=m,∵P(1,﹣m)把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP为直角三角形,∴当∠ACP=90°时,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),当∠APC=90°时,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直线PE的解析式为y=2x﹣2﹣m.令y=0,则x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵对称轴x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP为直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 《湖心岛产品分析》课件
- 《种成本比较分析》课件
- 八年级上册道德与法治第二课少年与梦知识总结
- 小学一年级20以内连加连减口算练习题1080道
- 《现代金融通论》课件
- 幼儿园周二食谱
- 高考新课标语文模拟试卷系列之76
- 《电子资源综述》课件
- 西安市销售员工作总结
- 水平井施工方案及措施
- 小学数学一年级上册-期末测试卷(二)含答案-人教版
- 登金陵凤凰台
- 小学四年级数学上册促销问题
- 初中体育-50米跑教学设计学情分析教材分析课后反思
- 国内外中学数学教学改革与发展
- 医院药品评价与遴选量化评分表
- 专业英语四级模拟试卷450(题后含答案及解析)
- 中等职业学校班主任能力比赛幼儿保育专业班级建设方案
- 50道《乡土中国》期末专题训练习题(多题型含解析)
- 滕王阁序带拼音全文译文
评论
0/150
提交评论