版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NOTESFROMTHEAIFRONTIERINSIGHTSFROMHUNDREDSOFUSECASES
DISCUSSIONPAPER
APRIL2018
MichaelChui|SanFranciscoJamesManyika|SanFranciscoMehdiMiremadi|ChicagoNicolausHenke|London
RitaChung|SiliconValleyPieterNel|NewYorkSankalpMalhotra|NewYork
Sinceitsfoundingin1990,theMcKinseyGlobalInstitute(MGI)hassoughttodevelopadeeperunderstandingoftheevolvingglobaleconomy.AsthebusinessandeconomicsresearcharmofMcKinsey&Company,MGIaimstoprovideleadersinthecommercial,public,andsocialsectorswiththefactsandinsightsonwhichtobasemanagementandpolicydecisions.
MGIresearchcombinesthedisciplinesofeconomicsandmanagement,employingtheanalyticaltoolsofeconomicswiththeinsightsofbusinessleaders.Our“micro-to-macro”methodologyexaminesmicroeconomicindustrytrendstobetterunderstandthebroadmacroeconomicforcesaffectingbusinessstrategyandpublicpolicy.MGI’sin-depthreportshavecoveredmorethan20countriesand30industries.Currentresearchfocusesonsixthemes:productivityandgrowth,naturalresources,labormarkets,theevolutionofglobalfinancialmarkets,theeconomicimpactoftechnologyandinnovation,andurbanization.Recentreportshaveassessedthedigitaleconomy,theimpactofAIandautomationonemployment,incomeinequality,theproductivitypuzzle,theeconomicbenefitsoftacklinggenderinequality,aneweraofglobalcompetition,Chineseinnovation,anddigitalandfinancialglobalization.
MGIisledbythreeMcKinsey&Companyseniorpartners:JacquesBughin,JonathanWoetzel,andJamesManyika,whoalsoservesasthechairmanofMGI.MichaelChui,SusanLund,AnuMadgavkar,JanMischke,SreeRamaswamy,andJaanaRemesareMGIpartners,andMekalaKrishnanandJeongminSeongareMGIseniorfellows.
ProjectteamsareledbytheMGIpartnersandagroupofseniorfellows,andincludeconsultantsfromMcKinseyofficesaroundtheworld.TheseteamsdrawonMcKinsey’sglobalnetworkofpartnersandindustryandmanagementexperts.AdviceandinputtoMGIresearchareprovidedbytheMGICouncil,membersofwhicharealsoinvolvedinMGI’sresearch.MGICouncilmembersaredrawnfromaroundtheworldandfromvarioussectorsandincludeAndrésCadena,SandrineDevillard,RichardDobbs,TarekElmasry,KatyGeorge,RajatGupta,EricHazan,EricLabaye,AchaLeke,ScottNyquist,
GaryPinkus,SvenSmit,OliverTonby,andEckartWindhagen.Inaddition,leadingeconomists,includingNobellaureates,actasresearchadviserstoMGIresearch.
ThepartnersofMcKinseyfundMGI’sresearch;itisnotcommissionedbyanybusiness,government,orotherinstitution.ForfurtherinformationaboutMGIandtodownloadreports,pleasevisit
/mgi
.
MCKINSEYANALYTICS
McKinseyAnalyticshelpsclientsachievebetterperformancethroughdata.Weworktogetherwithclientstobuildanalytics-drivenorganizations,helpingthemdevelopthestrategies,operations,andcapabilitiestoderiverapidandsustainedimpactfromanalytics.Overthepastfiveyears,wehaveworkedwithmorethan2,000clientsacrosseveryindustryandbusinessfunction.McKinseyAnalyticsisledgloballybyNicolausHenkeandNoshirKaka,togetherwithanexecutivecommitteecomprisedof40McKinseyseniorpartnersrepresentingallregionsandpractices.Today,McKinseyAnalytics
bringstogethermorethan1,900advancedanalyticsandAIexpertsandspansmorethan125domains(industry-andfunction-specificteamswithpeople,data,andtoolsfocusedonuniqueapplicationsofanalytics).McKinseyAnalyticsincludesseveralacquiredcompaniessuchasQuantumBlack,aleadingadvancedanalyticsfirmthatMcKinseyacquiredin2015.
Learnmoreat
/business-functions/mckinsey-analytics/our-insights.
Copyright©McKinsey&Company2018
INBRIEF
NOTESFROMTHEAIFRONTIER:
INSIGHTSFROMHUNDREDSOFUSECASES
Forthisdiscussionpaper,partofourongoingresearchintoevolvingtechnologiesandtheireffectonbusiness,economies,andsociety,wemappedtraditionalanalyticsandnewer“deeplearning”techniquesandtheproblemstheycansolvetomorethan400specific
usecasesincompaniesandorganizations.DrawingonMGIresearchandtheappliedexperiencewithartificialintelligence(AI)ofMcKinseyAnalytics,weassessboththepracticalapplicationsandtheeconomicpotentialofadvancedAItechniquesacrossindustriesandbusinessfunctions.WecontinuetostudytheseAItechniquesandadditionalusecases.Fornow,hereareourkeyfindings:
AI,whichforthepurposesofthispaperwecharacterizeas“deeplearning”techniquesusingartificialneuralnetworks,canbeusedtosolveavarietyofproblems.Techniquesthataddressclassification,estimation,andclusteringproblemsarecurrentlythemostwidelyapplicableintheusecaseswehaveidentified,reflectingtheproblemswhosesolutionsdrivevalueacrosstherangeofsectors.
ThegreatestpotentialforAIwehavefoundistocreatevalueinusecasesinwhichmoreestablishedanalyticaltechniquessuchasregressionandclassificationtechniques
canalreadybeused,butwhereneuralnetworktechniquescouldprovidehigherperformanceorgenerateadditionalinsightsandapplications.Thisistruefor69percentoftheAIusecasesidentifiedinourstudy.Inonly16percentofusecasesdidwefinda“greenfield”AIsolutionthatwasapplicablewhereotheranalyticsmethodswouldnotbeeffective.
BecauseofthewideapplicabilityofAIacrosstheeconomy,thetypesofusecaseswiththegreatestvaluepotentialvarybysector.Thesevariationsprimarilyresultfromtherelativeimportanceofdifferentdriversofvaluewithineachsector.Theyarealsoaffectedbytheavailabilityofdata,itssuitabilityforavailabletechniques,andtheapplicabilityofvarioustechniquesandalgorithmicsolutions.Inconsumer-facingindustriessuchasretail,forexample,marketingandsalesistheareawiththemostvalue.Inindustriessuchasadvancedmanufacturing,inwhichoperationalperformancedrivescorporateperformance,thegreatestpotentialisinsupplychain,logistics,andmanufacturing.
Thedeeplearningtechniquesonwhichwefocused—feedforwardneuralnetworks,recurrentneuralnetworks,andconvolutionalneuralnetworks—accountforabout
40percentoftheannualvaluepotentiallycreatedbyallanalyticstechniques.Thesethreetechniquestogethercanpotentiallyenablethecreationofbetween$3.5trillionand
$5.8trillioninvalueannually.Withinindustries,thatistheequivalentof1to9percentof2016revenue.
Capturingthepotentialimpactofthesetechniquesrequiressolvingmultipleproblems.Technicallimitationsincludetheneedforalargevolumeandvarietyofoftenlabeledtrainingdata,althoughcontinuedadvancesarealreadyhelpingaddressthese.Tougherperhapsmaybethereadinessandcapabilitychallengesforsomeorganizations.Societalconcernandregulation,forexampleaboutprivacyanduseofpersonaldata,canalsoconstrainAIuseinbanking,insurance,healthcare,andpharmaceuticalandmedicalproducts,aswellasinthepublicandsocialsectors,iftheseissuesarenotproperlyaddressed.
Thescaleofthepotentialeconomicandsocietalimpactcreatesanimperativeforalltheparticipants—AIinnovators,AI-usingcompaniesandpolicy-makers—toensureavibrantAIenvironmentthatcaneffectivelyandsafelycapturetheeconomicandsocietalbenefits.
McKinseyGlobalInstitute
NotesfromtheAIfrontier:Insightsfromhundredsofusecases
PAGE
11
PAGE
2
McKinseyGlobalInstitute
1.MappingAItechniquestoproblemtypes
What’sinside
Introduction
Page1
MappingAItechniques
toproblemtypes
Page2
Insightsfrom
usecases
Page7
Sizingthepotential
valueofAI
Page17
Theroadtoimpact
andvalue
Page26
Acknowledgments
Page31
INTRODUCTION
Artificialintelligence(AI)standsoutasatransformationaltechnologyofourdigitalage.Questionsaboutwhatitis,whatitcanalreadydo—andwhatithasthepotentialtobecome—cutacrosstechnology,psychology,politics,economics,sciencefiction,law,andethics.AIisthesubjectofcountlessdiscussionsandarticles,fromtreatisesabouttechnicaladvancestotabloidheadlinesaboutitseffects.Evenasthedebatecontinues,thetechnologiesunderpinningAIcontinuetomoveforward,enablingapplicationsfromfacialrecognitioninsmartphonestoconsumerappsthatuseAIalgorithmstodetectdiabetesandhypertensionwithincreasingaccuracy.1Indeed,whilemuchofthepublicdiscussionofAIfocusesonsciencefiction-likeAIrealizationsuchasrobots,thenumberofless-noticedpracticalapplicationsforAIthroughouttheeconomyisgrowingapaceandpermeatingourlives.
ThisdiscussionpaperseekstocontributetothebodyofknowledgeaboutAIbymappingAItechniquestothe
typesofproblemstheycanhelpsolveandthenmappingtheseproblemtypestomorethan400practicalusecasesandapplicationsinbusinessesacross19industries,fromaerospaceanddefensetotravelandthepublicsector,and
ninebusinessfunctionsrangingfrommarketingandsalesandsupply-chainmanagementtoproductdevelopmentandhumanresources.2Drawingonawidevarietyofpublic
andproprietarydatasources,includingtheexperiencesofourMcKinsey&Companycolleagues,wealsoassessthepotentialeconomicvalueofthelatestgenerationsofAItechnologies.TheAItechniqueswefocusonaredeeplearningtechniquesbasedonartificialneuralnetworks,whichweseeasgeneratingasmuchas40percentofthetotalpotentialvaluethatallanalyticstechniquescouldprovide.
Ourfindingshighlightthesubstantialpotentialofapplyingdeeplearningtechniquestousecasesacrosstheeconomy;thesetechniquescanprovideanincrementalliftbeyondthatfrommoretraditionalanalyticstechniques.Weidentifytheindustriesandbusinessfunctionsinwhichthereisvaluetobecaptured,andweestimatehowlargethatvaluecouldbeglobally.Forallthepotential,muchworkneedstobedonetoovercomearangeoflimitationsandobstaclestoAIapplication.Weconcludewithabriefdiscussionofthese
obstaclesandoffutureopportunitiesasthetechnologiescontinuetheiradvance.Ultimately,thevalueofAIisnottobefoundinthemodelsthemselves,butinorganizations’abilitiestoharnessthem.Businessleaderswillneedtoprioritizeandmakecarefulchoicesabouthow,when,andwheretodeploythem.
Thispaperispartofourcontinuingresearchintoanalytics,automation,andAItechnologies,andtheireffectonbusiness,theeconomy,andsociety.3ItisnotintendedtoserveasacomprehensiveguidetodeployingAI;forexample,weidentifybutdonotelaborateonissuesofdatastrategy,dataengineering,governance,orchangemanagementandculture
1GeoffreyH.Tisonetal.,“Cardiovascularriskstratificationusingoff-the-shelfwearablesandamulti-maskdeeplearningalgorithm,”Circulation,volume136,supplement1,November14,2017.
2Wedonotidentifythecompaniesbynameorcountry,forreasonsofclientconfidentiality.
3PreviousMcKinseyGlobalInstitutereportsontheseissuesincludeTheageofanalytics:Competinginadata-drivenworld,December2016;Afuturethatworks:Automation,employmentandproductivity,January2017;andArtificialintelligence:Thenextdigitalfrontier?June2017.Seealistofourrelatedresearchattheendofthispaper.
thatarevitalforcompaniesseekingtocapturevaluefromAIandanalytics.4Theusecasesweexaminedarenotexhaustive;indeed,wecontinuetoidentifyandexamineothers,andwemayupdateourfindingsinduecourse.Nonetheless,webelievethatthisresearchcanmakeausefulcontributiontoourunderstandingofwhatAIcanandcan’t(yet)do,andhowmuchvaluecouldbederivedfromitsuse.Itisimportanttohighlightthat,evenasweseeeconomicpotentialintheuseofAItechniques,theuseofdatamustalwaystakeintoaccountconcernsincludingdatasecurity,privacy,andpotentialissuesofbias,issueswehaveaddressedelsewhere.5
MAPPINGAITECHNIQUESTOPROBLEMTYPES
Asartificialintelligencetechnologiesadvance,sodoesthedefinitionofwhichtechniquesconstituteAI(seeBox1,“Deeplearning’soriginsandpioneers”).6Forthepurposesofthispaper,weuseAIasshorthandspecificallytorefertodeeplearningtechniquesthatuseartificialneuralnetworks.Inthissection,wedefinearangeofAIandadvancedanalyticstechniquesaswellaskeyproblemtypestowhichthesetechniquescanbeapplied.
NEURALNETWORKSANDOTHERMACHINELEARNINGTECHNIQUES
Welookedatthevaluepotentialofarangeofanalyticstechniques.Thefocusofourresearchwasonmethodsusingartificialneuralnetworksfordeeplearning,whichwecollectivelyrefertoasAIinthispaper,understandingthatindifferenttimesandcontexts,othertechniquescanandhavebeenincludedinAI.Wealsoexaminedothermachinelearningtechniquesandtraditionalanalyticstechniques(Exhibit1).WefocusedonspecificpotentialapplicationsofAIinbusinessandthepublicsector(sometimesdescribed
as“artificialnarrowAI”)ratherthanthelonger-termpossibilityofan“artificialgeneralintelligence”thatcouldpotentiallyperformanyintellectualtaskahumanbeingiscapableof.
Exhibit1
Artificialintelligence,machinelearning,andotheranalyticstechniquesthatweexaminedforthisresearch
Techniques ConsideredAIforourresearch
LikelihoodtobeusedinAIapplications
LessMore
Advancedtechniques
Deeplearningneuralnetworks(e.g.,feedforwardneuralnetworks,CNNs,RNNs,GANs)
Instancebased(e.g.,KNN)
Dimensionalityreduction(e.g.,PCA,tSNE) Ensemblelearning(e.g.,random
forest,gradientboosting)
Decisiontreelearning
MonteCarlo Linearclassifiers(e.g.,Fisher’smethods lineardiscriminant,SVM)
Statisticalinference(e.g.,Bayesianinference,ANOVA)
Clustering(e.g.,k-means,treebased,dbscan)
Markovprocess RegressionAnalysis(e.g.,(e.g.,Markovchain) linear,logistic,lasso)
Descriptivestatistics(e.g.,confidenceinterval)
Traditionaltechniques
NaiveBayesclassifier
Reinforcementlearning
Transferlearning
SOURCE:McKinseyGlobalInstituteanalysis
4SeeJacquesBughin,BrianMcCarthy,andMichaelChui,“Asurveyof3,000executivesrevealshowbusinessessucceedwithAI,”HarvardBusinessReview,August28,2017.
5MichaelChui,JamesManyika,andMehdiMiremadi,“WhatAIcanandcan’tdo(yet)foryourbusiness,”
McKinseyQuarterly,January2018.
6ForadetailedlookatAItechniques,seeAnexecutive’sguidetoAI,McKinseyAnalytics,January2018.
/business-functions/mckinsey-analytics/our-insights/an-executives-guide-to-ai
Box1:Deeplearning’soriginsandpioneers
Itistooearlytowriteafullhistoryofdeeplearning—andsomeofthedetailsarecontested—butwecanalreadytraceanadmittedlyincompleteoutlineofitsoriginsandidentifysomeofthepioneers.TheyincludeWarrenMcCullochandWalterPitts,whoasearlyas1943proposed
anartificialneuron,acomputationalmodelofthe“nervenet”inthebrain.1BernardWidrowandTedHoffatStanfordUniversity,developedaneuralnetworkapplicationbyreducingnoiseinphonelinesinthelate1950s.2Aroundthesametime,FrankRosenblatt,anAmericanpsychologist,introducedtheideaofadevicecalledthePerceptron,whichmimickedthe
neuralstructureofthebrainandshowedanabilitytolearn.3MIT’sMarvinMinskyandSeymourPapertthenputadamperonthisresearchintheir1969book“Perceptrons”,byshowingmathematicallythatthePerceptroncouldonlyperformverybasictasks.4Theirbookalsodiscussedthedifficultyoftrainingmulti-layerneuralnetworks.In1986,GeoffreyHintonattheUniversityofToronto,alongwithcolleaguesDavidRumelhartandRonaldWilliams,solvedthistrainingproblemwiththepublicationofanowfamousbackpropagationtrainingalgorithm—althoughsomepractitionerspointtoaFinnishmathematician,SeppoLinnainmaa,ashavinginventedbackpropagationalreadyinthe1960s.5YannLeCunatNYUpioneeredtheuse
ofneuralnetworksonimagerecognitiontasksandhis1998paperdefinedtheconceptofconvolutionalneuralnetworks,whichmimicthehumanvisualcortex.6Inparallel,JohnHopfieldpopularizedthe“Hopfield”networkwhichwasthefirstrecurrentneuralnetwork.7ThiswassubsequentlyexpandeduponbyJurgenSchmidhuberandSeppHochreiterin1997with
theintroductionofthelongshort-termmemory(LSTM),greatlyimprovingtheefficiencyandpracticalityofrecurrentneuralnetworks.8Hintonandtwoofhisstudentsin2012highlightedthepowerofdeeplearningwhentheyobtainedsignificantresultsinthewell-knownImageNetcompetition,basedonadatasetcollatedbyFei-FeiLiandothers.9Atthesametime,JeffreyDeanandAndrewNgweredoingbreakthroughworkonlargescaleimagerecognitionatGoogleBrain.10Deeplearningalsoenhancedtheexistingfieldofreinforcementlearning,ledbyresearcherssuchasRichardSutton,leadingtothegame-playingsuccessesofsystemsdevelopedbyDeepMind.11In2014,IanGoodfellowpublishedhispaperongenerativeadversarialnetworks,whichalongwithreinforcementlearninghasbecomethefocusofmuchoftherecentresearchinthefield.12ContinuingadvancesinAIcapabilitieshaveledtoStanford
University’sOneHundredYearStudyonArtificialIntelligence,foundedbyEricHorvitz,buildingonthelong-standingresearchheandhiscolleagueshaveledatMicrosoftResearch.Wehavebenefitedfromtheinputandguidanceofmanyofthesepioneersinourresearchoverthepastfewyears.
1WarrenMcCullochandWalterPitts,“Alogicalcalculusoftheideasimmanentinnervousactivity,”BulletinofMathematicalBiophysics,volume5,1943.
2AndrewGoldstein,“BernardWidroworalhistory,”IEEEGlobalHistoryNetwork,1997.
3FrankRosenblatt,“ThePerceptron:Aprobabilisticmodelforinformationstorageandorganizationinthebrain,”
Psychologicalreview,volume65,number6,1958.
4MarvinMinskyandSeymourA.Papert,Perceptrons:Anintroductiontocomputationalgeometry,MITPress,January1969.
5DavidE.Rumelhart,GeoffreyE.Hinton,andRonaldJ.Williams,“Learningrepresentationsbyback-propagatingerrors,”Nature,volume323,October1986;foradiscussionofLinnainmaa’sroleseeJuergenSchmidhuber,Whoinventedbackpropagation?,Blogpost
http://people.idsia.ch/~juergen/who-invented-backpropagation.html,
2014.
6YannLeCun,PatrickHaffner,LeonBotton,andYoshuaBengio,Objectrecognitionwithgradient-basedlearning,ProceedingsoftheIEEE,November1998.
7JohnHopfield,Neuralnetworkdsandphysicalsystemswithemergentcollectivecomputationalabilities,PNAS,April1982.
8SeppHochreiterandJuergenSchmidhuber,“Longshort-termmemory,”NeuralComputation,volume9,number8,December1997.
9AlexKrizhevsky,IlyaSutskever,andGeoffreyE.Hinton,ImageNetclassificationwithdeepconvolutionalneuralnetworks,NIPS12proceedingsofthe25thInternationalConferenceonNeuralInformationProcessingSystems,December2012.
10JeffreyDeanetal.,Largescaledistributeddeepnetworks,NIPS2012.
11RichardS.SuttonandAndrewG.Barto,Reinforcementlearning:Anintroduction,MITPress,1998.
12IanJ.Goodfellow,Generativeadversarialnetworks,ArXiv,June2014.
Neuralnetworksareasubsetofmachinelearningtechniques.Essentially,theyareAIsystemsbasedonsimulatingconnected“neuralunits,”looselymodelingthewaythatneuronsinteractinthebrain.Computationalmodelsinspiredbyneuralconnectionshavebeenstudiedsincethe1940sandhavereturnedtoprominenceascomputerprocessingpowerhasincreasedandlargetrainingdatasetshavebeenusedtosuccessfullyanalyzeinputdatasuchasimages,video,andspeech.AIpractitionersrefertothesetechniquesas“deeplearning,”sinceneuralnetworkshavemany(“deep”)layersofsimulatedinterconnectedneurons.Beforedeeplearning,neuralnetworksoftenhadonlythreetofive
layersanddozensofneurons;deeplearningnetworkscanhaveseventotenormorelayers,withsimulatedneuronsnumberingintothemillions.
Inthispaper,weanalyzedtheapplicationsandvalueofthreeneuralnetworktechniques:
Feedforwardneuralnetworks.Oneofthemostcommontypesofartificialneuralnetwork.Inthisarchitecture,informationmovesinonlyonedirection,forward,fromtheinputlayer,throughthe“hidden”layers,totheoutputlayer.Therearenoloopsinthenetwork.Thefirstsingle-neuronnetworkwasproposedin1958byAIpioneerFrankRosenblatt.Whiletheideaisnotnew,advancesincomputingpower,trainingalgorithms,andavailabledataledtohigherlevelsofperformancethanpreviouslypossible.
Recurrentneuralnetworks(RNNs).Artificialneuralnetworkswhoseconnectionsbetweenneuronsincludeloops,well-suitedforprocessingsequencesofinputs,whichmakesthemhighlyeffectiveinawiderangeofapplications,fromhandwriting,totexts,tospeechrecognition.InNovember2016,OxfordUniversityresearchersreportedthatasystembasedonrecurrentneuralnetworks(andconvolutionalneuralnetworks)hadachieved95percentaccuracyinreadinglips,outperformingexperiencedhumanlipreaders,whotestedat52percentaccuracy.
Convolutionalneuralnetworks(CNNs).Artificialneuralnetworksinwhichtheconnectionsbetweenneurallayersareinspiredbytheorganizationoftheanimalvisualcortex,theportionofthebrainthatprocessesimages,wellsuitedforvisualperceptiontasks.
Weestimatedthepotentialofthosethreedeepneuralnetworktechniquestocreatevalue,aswellasothermachinelearningtechniquessuchastree-basedensemblelearning,classifiers,andclustering,andtraditionalanalyticssuchasdimensionalityreductionandregression.
Forourusecases,wealsoconsideredtwoothertechniques—generativeadversarialnetworks(GANs)andreinforcementlearning—butdidnotincludetheminourpotentialvalueassessmentofAI,sincetheyremainnascenttechniquesthatarenotyetwidelyappliedinbusinesscontexts.However,aswenoteintheconcludingsectionofthispaper,theymayhaveconsiderablerelevanceinthefuture.
Generativeadversarialnetworks(GANs).Theseusuallyusetwoneuralnetworkscontestingeachotherinazero-sumgameframework(thus“adversarial”).GANscanlearntomimicvariousdistributionsofdata(forexampletext,speech,andimages)andarethereforevaluableingeneratingtestdatasetswhenthesearenotreadilyavailable.
Reinforcementlearning.Thisisasubfieldofmachinelearninginwhichsystemsaretrainedbyreceivingvirtual“rewards”or“punishments,”essentiallylearningbytrialanderror.GoogleDeepMindhasusedreinforcementlearningtodevelopsystemsthatcanplaygames,includingvideogamesandboardgamessuchasGo,betterthanhumanchampions.
PROBLEMTYPESANDTHEANALYTICTECHNIQUESTHATCANBEAPPLIEDTOSOLVETHEM
Inabusinesssetting,thoseanalytictechniquescanbeappliedtosolvereal-lifeproblems.Forthisresearch,wecreatedataxonomyofhigh-levelproblemtypes,characterizedbytheinputs,outputs,andpurposeofeach.Acorrespondingsetofanalytictechniquescanbeappliedtosolvetheseproblems.Theseproblemtypesinclude:
Classification.Basedonasetoftrainingdata,categorizenewinputsasbelongingtooneofasetofcategories.Anexampleofclassificationisidentifyingwhetheranimagecontainsaspecifictypeofobject,suchasatruckoracar,oraproductofacceptablequalitycomingfromamanufacturingline.
Continuousestimation.Basedonasetoftrainingdata,estimatethenextnumericvalueinasequence.Thistypeofproblemissometimesdescribedas“prediction,”particularlywhenitisappliedtotimeseriesdata.Oneexampleofcontinuousestimationisforecastingthesalesdemandforaproduct,basedonasetofinputdatasuchasprevioussalesfigures,consumersentiment,andweather.Anotherexampleispredictingthepriceofrealestate,suchasabuilding,usingdatadescribingthepropertycombinedwithphotosofit.
Clustering.Theseproblemsrequireasystemtocreateasetofcategories,forwhichindividualdatainstanceshaveasetofcommonorsimilarcharacteristics.Anexampleofclusteringiscreatingasetofconsumersegmentsbasedondataaboutindividualconsumers,includingdemographics,preferences,andbuyerbehavior.
Allotheroptimization.Theseproblemsrequireasystemtogenerateasetofoutputsthatoptimizeoutcomesforaspecificobjectivefunction(someoftheotherproblemtypescanbeconsideredtypesofoptimization,sowedescribetheseas“allother”optimization).Generatingarouteforavehiclethatcreatestheoptimumcombinationoftimeandfueluseisanexampleofoptimization.
Anomalydetection.Givenatrainingsetofdata,determinewhetherspecificinputsareoutoftheordinary.Forinstance,asystemcouldbetrainedonasetofhistoricalvibrationdataassociatedwiththeperformanceofanoperatingpieceofmachinery,andthendeterminewhetheranewvibrationreadingsuggeststhatthemachineisnotoperatingnormally.Notethatanomalydetectioncanbeconsideredasubcategoryofclassification.
Ranking.Rankingalgorithmsareusedmostoftenininformationretrievalproblemsinwhichtheresultsofaqueryorrequestneedstobeorderedbysomecriterion.
Recommendationsystemssuggestingnextproducttobuyusethesetypesofalgorithmsasafinalstep,sortingsuggestionsbyrelevance,beforepresentingtheresultstotheuser.
Recommendations.Thesesystemsproviderecommendations,basedonasetoftrainingdata.Acommonexampleofrecommendationsaresystemsthatsuggestthe“nextproducttobuy”foracustomer,basedonthebuyingpatternsofsimilarindividuals,andtheobservedbehaviorofthespecificperson.
Datageneration.Theseproblemsrequireasystemtogenerateappropriatelynoveldatabasedontrainingdata.Forinstance,amusiccompositionsystemmightbeusedtogeneratenewpiecesofmusicinaparticularstyle,afterhavingbeentrainedonpiecesofmusicinthatstyle.
Exhibit2illustratestherelativetotalvalueoftheseproblemtypesacrossourdatabaseofusecases,alongwithsomeofthesampleanalyticstechniquesthatcanbeusedtosolveeachproblemtype.Themostprevalentproblemtypesareclassification,continuousestimation,andclustering,sugge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道施工机械销售合同
- 电子市场租赁合同文档
- 建筑施工合同模板-河北版
- 市场调研服务合同范本
- 2024年度政府服装类采购合同2篇
- 2024版软件开发与购买合同范本2篇
- 2024年度钢结构建筑施工保险服务合同3篇
- 劳动法规定劳动合同期限多久
- 芒果购销合同文档全文预览(2024版)-年度
- 食品委托加工合同范本2篇
- 2024届高三上学期开学家长会
- 中国新一代信息技术产业发展现状及前景趋势分析报告2024-2030年
- 2024数智化绿色低碳评价管理体系
- UNIT 2 Were Family!教学设计 2024-2025学年人教版英语七年级上册
- 《司马光 》第二课时公开课一等奖创新教案
- 10KV架空线路工程班前、班后会模版
- 2024年湖北武汉大学专业技术支撑岗位招聘历年(高频重点复习提升训练)共500题附带答案详解
- 离婚协议书模板可打印(2024版)
- 人教版PEP五年级上册英语《Unit 2My week第二课时》教案
- 2024-2030年中国IP行业市场深度分析及发展趋势研究报告
- DB14-T 3005-2024 政务信息化项目验收材料要求
评论
0/150
提交评论