AI前沿笔记:来自数百个应用案例的见解_第1页
AI前沿笔记:来自数百个应用案例的见解_第2页
AI前沿笔记:来自数百个应用案例的见解_第3页
AI前沿笔记:来自数百个应用案例的见解_第4页
AI前沿笔记:来自数百个应用案例的见解_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NOTESFROMTHEAIFRONTIERINSIGHTSFROMHUNDREDSOFUSECASES

DISCUSSIONPAPER

APRIL2018

MichaelChui|SanFranciscoJamesManyika|SanFranciscoMehdiMiremadi|ChicagoNicolausHenke|London

RitaChung|SiliconValleyPieterNel|NewYorkSankalpMalhotra|NewYork

Sinceitsfoundingin1990,theMcKinseyGlobalInstitute(MGI)hassoughttodevelopadeeperunderstandingoftheevolvingglobaleconomy.AsthebusinessandeconomicsresearcharmofMcKinsey&Company,MGIaimstoprovideleadersinthecommercial,public,andsocialsectorswiththefactsandinsightsonwhichtobasemanagementandpolicydecisions.

MGIresearchcombinesthedisciplinesofeconomicsandmanagement,employingtheanalyticaltoolsofeconomicswiththeinsightsofbusinessleaders.Our“micro-to-macro”methodologyexaminesmicroeconomicindustrytrendstobetterunderstandthebroadmacroeconomicforcesaffectingbusinessstrategyandpublicpolicy.MGI’sin-depthreportshavecoveredmorethan20countriesand30industries.Currentresearchfocusesonsixthemes:productivityandgrowth,naturalresources,labormarkets,theevolutionofglobalfinancialmarkets,theeconomicimpactoftechnologyandinnovation,andurbanization.Recentreportshaveassessedthedigitaleconomy,theimpactofAIandautomationonemployment,incomeinequality,theproductivitypuzzle,theeconomicbenefitsoftacklinggenderinequality,aneweraofglobalcompetition,Chineseinnovation,anddigitalandfinancialglobalization.

MGIisledbythreeMcKinsey&Companyseniorpartners:JacquesBughin,JonathanWoetzel,andJamesManyika,whoalsoservesasthechairmanofMGI.MichaelChui,SusanLund,AnuMadgavkar,JanMischke,SreeRamaswamy,andJaanaRemesareMGIpartners,andMekalaKrishnanandJeongminSeongareMGIseniorfellows.

ProjectteamsareledbytheMGIpartnersandagroupofseniorfellows,andincludeconsultantsfromMcKinseyofficesaroundtheworld.TheseteamsdrawonMcKinsey’sglobalnetworkofpartnersandindustryandmanagementexperts.AdviceandinputtoMGIresearchareprovidedbytheMGICouncil,membersofwhicharealsoinvolvedinMGI’sresearch.MGICouncilmembersaredrawnfromaroundtheworldandfromvarioussectorsandincludeAndrésCadena,SandrineDevillard,RichardDobbs,TarekElmasry,KatyGeorge,RajatGupta,EricHazan,EricLabaye,AchaLeke,ScottNyquist,

GaryPinkus,SvenSmit,OliverTonby,andEckartWindhagen.Inaddition,leadingeconomists,includingNobellaureates,actasresearchadviserstoMGIresearch.

ThepartnersofMcKinseyfundMGI’sresearch;itisnotcommissionedbyanybusiness,government,orotherinstitution.ForfurtherinformationaboutMGIandtodownloadreports,pleasevisit

/mgi

.

MCKINSEYANALYTICS

McKinseyAnalyticshelpsclientsachievebetterperformancethroughdata.Weworktogetherwithclientstobuildanalytics-drivenorganizations,helpingthemdevelopthestrategies,operations,andcapabilitiestoderiverapidandsustainedimpactfromanalytics.Overthepastfiveyears,wehaveworkedwithmorethan2,000clientsacrosseveryindustryandbusinessfunction.McKinseyAnalyticsisledgloballybyNicolausHenkeandNoshirKaka,togetherwithanexecutivecommitteecomprisedof40McKinseyseniorpartnersrepresentingallregionsandpractices.Today,McKinseyAnalytics

bringstogethermorethan1,900advancedanalyticsandAIexpertsandspansmorethan125domains(industry-andfunction-specificteamswithpeople,data,andtoolsfocusedonuniqueapplicationsofanalytics).McKinseyAnalyticsincludesseveralacquiredcompaniessuchasQuantumBlack,aleadingadvancedanalyticsfirmthatMcKinseyacquiredin2015.

Learnmoreat

/business-functions/mckinsey-analytics/our-insights.

Copyright©McKinsey&Company2018

INBRIEF

NOTESFROMTHEAIFRONTIER:

INSIGHTSFROMHUNDREDSOFUSECASES

Forthisdiscussionpaper,partofourongoingresearchintoevolvingtechnologiesandtheireffectonbusiness,economies,andsociety,wemappedtraditionalanalyticsandnewer“deeplearning”techniquesandtheproblemstheycansolvetomorethan400specific

usecasesincompaniesandorganizations.DrawingonMGIresearchandtheappliedexperiencewithartificialintelligence(AI)ofMcKinseyAnalytics,weassessboththepracticalapplicationsandtheeconomicpotentialofadvancedAItechniquesacrossindustriesandbusinessfunctions.WecontinuetostudytheseAItechniquesandadditionalusecases.Fornow,hereareourkeyfindings:

AI,whichforthepurposesofthispaperwecharacterizeas“deeplearning”techniquesusingartificialneuralnetworks,canbeusedtosolveavarietyofproblems.Techniquesthataddressclassification,estimation,andclusteringproblemsarecurrentlythemostwidelyapplicableintheusecaseswehaveidentified,reflectingtheproblemswhosesolutionsdrivevalueacrosstherangeofsectors.

ThegreatestpotentialforAIwehavefoundistocreatevalueinusecasesinwhichmoreestablishedanalyticaltechniquessuchasregressionandclassificationtechniques

canalreadybeused,butwhereneuralnetworktechniquescouldprovidehigherperformanceorgenerateadditionalinsightsandapplications.Thisistruefor69percentoftheAIusecasesidentifiedinourstudy.Inonly16percentofusecasesdidwefinda“greenfield”AIsolutionthatwasapplicablewhereotheranalyticsmethodswouldnotbeeffective.

BecauseofthewideapplicabilityofAIacrosstheeconomy,thetypesofusecaseswiththegreatestvaluepotentialvarybysector.Thesevariationsprimarilyresultfromtherelativeimportanceofdifferentdriversofvaluewithineachsector.Theyarealsoaffectedbytheavailabilityofdata,itssuitabilityforavailabletechniques,andtheapplicabilityofvarioustechniquesandalgorithmicsolutions.Inconsumer-facingindustriessuchasretail,forexample,marketingandsalesistheareawiththemostvalue.Inindustriessuchasadvancedmanufacturing,inwhichoperationalperformancedrivescorporateperformance,thegreatestpotentialisinsupplychain,logistics,andmanufacturing.

Thedeeplearningtechniquesonwhichwefocused—feedforwardneuralnetworks,recurrentneuralnetworks,andconvolutionalneuralnetworks—accountforabout

40percentoftheannualvaluepotentiallycreatedbyallanalyticstechniques.Thesethreetechniquestogethercanpotentiallyenablethecreationofbetween$3.5trillionand

$5.8trillioninvalueannually.Withinindustries,thatistheequivalentof1to9percentof2016revenue.

Capturingthepotentialimpactofthesetechniquesrequiressolvingmultipleproblems.Technicallimitationsincludetheneedforalargevolumeandvarietyofoftenlabeledtrainingdata,althoughcontinuedadvancesarealreadyhelpingaddressthese.Tougherperhapsmaybethereadinessandcapabilitychallengesforsomeorganizations.Societalconcernandregulation,forexampleaboutprivacyanduseofpersonaldata,canalsoconstrainAIuseinbanking,insurance,healthcare,andpharmaceuticalandmedicalproducts,aswellasinthepublicandsocialsectors,iftheseissuesarenotproperlyaddressed.

Thescaleofthepotentialeconomicandsocietalimpactcreatesanimperativeforalltheparticipants—AIinnovators,AI-usingcompaniesandpolicy-makers—toensureavibrantAIenvironmentthatcaneffectivelyandsafelycapturetheeconomicandsocietalbenefits.

McKinseyGlobalInstitute

NotesfromtheAIfrontier:Insightsfromhundredsofusecases

PAGE

11

PAGE

2

McKinseyGlobalInstitute

1.MappingAItechniquestoproblemtypes

What’sinside

Introduction

Page1

MappingAItechniques

toproblemtypes

Page2

Insightsfrom

usecases

Page7

Sizingthepotential

valueofAI

Page17

Theroadtoimpact

andvalue

Page26

Acknowledgments

Page31

INTRODUCTION

Artificialintelligence(AI)standsoutasatransformationaltechnologyofourdigitalage.Questionsaboutwhatitis,whatitcanalreadydo—andwhatithasthepotentialtobecome—cutacrosstechnology,psychology,politics,economics,sciencefiction,law,andethics.AIisthesubjectofcountlessdiscussionsandarticles,fromtreatisesabouttechnicaladvancestotabloidheadlinesaboutitseffects.Evenasthedebatecontinues,thetechnologiesunderpinningAIcontinuetomoveforward,enablingapplicationsfromfacialrecognitioninsmartphonestoconsumerappsthatuseAIalgorithmstodetectdiabetesandhypertensionwithincreasingaccuracy.1Indeed,whilemuchofthepublicdiscussionofAIfocusesonsciencefiction-likeAIrealizationsuchasrobots,thenumberofless-noticedpracticalapplicationsforAIthroughouttheeconomyisgrowingapaceandpermeatingourlives.

ThisdiscussionpaperseekstocontributetothebodyofknowledgeaboutAIbymappingAItechniquestothe

typesofproblemstheycanhelpsolveandthenmappingtheseproblemtypestomorethan400practicalusecasesandapplicationsinbusinessesacross19industries,fromaerospaceanddefensetotravelandthepublicsector,and

ninebusinessfunctionsrangingfrommarketingandsalesandsupply-chainmanagementtoproductdevelopmentandhumanresources.2Drawingonawidevarietyofpublic

andproprietarydatasources,includingtheexperiencesofourMcKinsey&Companycolleagues,wealsoassessthepotentialeconomicvalueofthelatestgenerationsofAItechnologies.TheAItechniqueswefocusonaredeeplearningtechniquesbasedonartificialneuralnetworks,whichweseeasgeneratingasmuchas40percentofthetotalpotentialvaluethatallanalyticstechniquescouldprovide.

Ourfindingshighlightthesubstantialpotentialofapplyingdeeplearningtechniquestousecasesacrosstheeconomy;thesetechniquescanprovideanincrementalliftbeyondthatfrommoretraditionalanalyticstechniques.Weidentifytheindustriesandbusinessfunctionsinwhichthereisvaluetobecaptured,andweestimatehowlargethatvaluecouldbeglobally.Forallthepotential,muchworkneedstobedonetoovercomearangeoflimitationsandobstaclestoAIapplication.Weconcludewithabriefdiscussionofthese

obstaclesandoffutureopportunitiesasthetechnologiescontinuetheiradvance.Ultimately,thevalueofAIisnottobefoundinthemodelsthemselves,butinorganizations’abilitiestoharnessthem.Businessleaderswillneedtoprioritizeandmakecarefulchoicesabouthow,when,andwheretodeploythem.

Thispaperispartofourcontinuingresearchintoanalytics,automation,andAItechnologies,andtheireffectonbusiness,theeconomy,andsociety.3ItisnotintendedtoserveasacomprehensiveguidetodeployingAI;forexample,weidentifybutdonotelaborateonissuesofdatastrategy,dataengineering,governance,orchangemanagementandculture

1GeoffreyH.Tisonetal.,“Cardiovascularriskstratificationusingoff-the-shelfwearablesandamulti-maskdeeplearningalgorithm,”Circulation,volume136,supplement1,November14,2017.

2Wedonotidentifythecompaniesbynameorcountry,forreasonsofclientconfidentiality.

3PreviousMcKinseyGlobalInstitutereportsontheseissuesincludeTheageofanalytics:Competinginadata-drivenworld,December2016;Afuturethatworks:Automation,employmentandproductivity,January2017;andArtificialintelligence:Thenextdigitalfrontier?June2017.Seealistofourrelatedresearchattheendofthispaper.

thatarevitalforcompaniesseekingtocapturevaluefromAIandanalytics.4Theusecasesweexaminedarenotexhaustive;indeed,wecontinuetoidentifyandexamineothers,andwemayupdateourfindingsinduecourse.Nonetheless,webelievethatthisresearchcanmakeausefulcontributiontoourunderstandingofwhatAIcanandcan’t(yet)do,andhowmuchvaluecouldbederivedfromitsuse.Itisimportanttohighlightthat,evenasweseeeconomicpotentialintheuseofAItechniques,theuseofdatamustalwaystakeintoaccountconcernsincludingdatasecurity,privacy,andpotentialissuesofbias,issueswehaveaddressedelsewhere.5

MAPPINGAITECHNIQUESTOPROBLEMTYPES

Asartificialintelligencetechnologiesadvance,sodoesthedefinitionofwhichtechniquesconstituteAI(seeBox1,“Deeplearning’soriginsandpioneers”).6Forthepurposesofthispaper,weuseAIasshorthandspecificallytorefertodeeplearningtechniquesthatuseartificialneuralnetworks.Inthissection,wedefinearangeofAIandadvancedanalyticstechniquesaswellaskeyproblemtypestowhichthesetechniquescanbeapplied.

NEURALNETWORKSANDOTHERMACHINELEARNINGTECHNIQUES

Welookedatthevaluepotentialofarangeofanalyticstechniques.Thefocusofourresearchwasonmethodsusingartificialneuralnetworksfordeeplearning,whichwecollectivelyrefertoasAIinthispaper,understandingthatindifferenttimesandcontexts,othertechniquescanandhavebeenincludedinAI.Wealsoexaminedothermachinelearningtechniquesandtraditionalanalyticstechniques(Exhibit1).WefocusedonspecificpotentialapplicationsofAIinbusinessandthepublicsector(sometimesdescribed

as“artificialnarrowAI”)ratherthanthelonger-termpossibilityofan“artificialgeneralintelligence”thatcouldpotentiallyperformanyintellectualtaskahumanbeingiscapableof.

Exhibit1

Artificialintelligence,machinelearning,andotheranalyticstechniquesthatweexaminedforthisresearch

Techniques ConsideredAIforourresearch

LikelihoodtobeusedinAIapplications

LessMore

Advancedtechniques

Deeplearningneuralnetworks(e.g.,feedforwardneuralnetworks,CNNs,RNNs,GANs)

Instancebased(e.g.,KNN)

Dimensionalityreduction(e.g.,PCA,tSNE) Ensemblelearning(e.g.,random

forest,gradientboosting)

Decisiontreelearning

MonteCarlo Linearclassifiers(e.g.,Fisher’smethods lineardiscriminant,SVM)

Statisticalinference(e.g.,Bayesianinference,ANOVA)

Clustering(e.g.,k-means,treebased,dbscan)

Markovprocess RegressionAnalysis(e.g.,(e.g.,Markovchain) linear,logistic,lasso)

Descriptivestatistics(e.g.,confidenceinterval)

Traditionaltechniques

NaiveBayesclassifier

Reinforcementlearning

Transferlearning

SOURCE:McKinseyGlobalInstituteanalysis

4SeeJacquesBughin,BrianMcCarthy,andMichaelChui,“Asurveyof3,000executivesrevealshowbusinessessucceedwithAI,”HarvardBusinessReview,August28,2017.

5MichaelChui,JamesManyika,andMehdiMiremadi,“WhatAIcanandcan’tdo(yet)foryourbusiness,”

McKinseyQuarterly,January2018.

6ForadetailedlookatAItechniques,seeAnexecutive’sguidetoAI,McKinseyAnalytics,January2018.

/business-functions/mckinsey-analytics/our-insights/an-executives-guide-to-ai

Box1:Deeplearning’soriginsandpioneers

Itistooearlytowriteafullhistoryofdeeplearning—andsomeofthedetailsarecontested—butwecanalreadytraceanadmittedlyincompleteoutlineofitsoriginsandidentifysomeofthepioneers.TheyincludeWarrenMcCullochandWalterPitts,whoasearlyas1943proposed

anartificialneuron,acomputationalmodelofthe“nervenet”inthebrain.1BernardWidrowandTedHoffatStanfordUniversity,developedaneuralnetworkapplicationbyreducingnoiseinphonelinesinthelate1950s.2Aroundthesametime,FrankRosenblatt,anAmericanpsychologist,introducedtheideaofadevicecalledthePerceptron,whichmimickedthe

neuralstructureofthebrainandshowedanabilitytolearn.3MIT’sMarvinMinskyandSeymourPapertthenputadamperonthisresearchintheir1969book“Perceptrons”,byshowingmathematicallythatthePerceptroncouldonlyperformverybasictasks.4Theirbookalsodiscussedthedifficultyoftrainingmulti-layerneuralnetworks.In1986,GeoffreyHintonattheUniversityofToronto,alongwithcolleaguesDavidRumelhartandRonaldWilliams,solvedthistrainingproblemwiththepublicationofanowfamousbackpropagationtrainingalgorithm—althoughsomepractitionerspointtoaFinnishmathematician,SeppoLinnainmaa,ashavinginventedbackpropagationalreadyinthe1960s.5YannLeCunatNYUpioneeredtheuse

ofneuralnetworksonimagerecognitiontasksandhis1998paperdefinedtheconceptofconvolutionalneuralnetworks,whichmimicthehumanvisualcortex.6Inparallel,JohnHopfieldpopularizedthe“Hopfield”networkwhichwasthefirstrecurrentneuralnetwork.7ThiswassubsequentlyexpandeduponbyJurgenSchmidhuberandSeppHochreiterin1997with

theintroductionofthelongshort-termmemory(LSTM),greatlyimprovingtheefficiencyandpracticalityofrecurrentneuralnetworks.8Hintonandtwoofhisstudentsin2012highlightedthepowerofdeeplearningwhentheyobtainedsignificantresultsinthewell-knownImageNetcompetition,basedonadatasetcollatedbyFei-FeiLiandothers.9Atthesametime,JeffreyDeanandAndrewNgweredoingbreakthroughworkonlargescaleimagerecognitionatGoogleBrain.10Deeplearningalsoenhancedtheexistingfieldofreinforcementlearning,ledbyresearcherssuchasRichardSutton,leadingtothegame-playingsuccessesofsystemsdevelopedbyDeepMind.11In2014,IanGoodfellowpublishedhispaperongenerativeadversarialnetworks,whichalongwithreinforcementlearninghasbecomethefocusofmuchoftherecentresearchinthefield.12ContinuingadvancesinAIcapabilitieshaveledtoStanford

University’sOneHundredYearStudyonArtificialIntelligence,foundedbyEricHorvitz,buildingonthelong-standingresearchheandhiscolleagueshaveledatMicrosoftResearch.Wehavebenefitedfromtheinputandguidanceofmanyofthesepioneersinourresearchoverthepastfewyears.

1WarrenMcCullochandWalterPitts,“Alogicalcalculusoftheideasimmanentinnervousactivity,”BulletinofMathematicalBiophysics,volume5,1943.

2AndrewGoldstein,“BernardWidroworalhistory,”IEEEGlobalHistoryNetwork,1997.

3FrankRosenblatt,“ThePerceptron:Aprobabilisticmodelforinformationstorageandorganizationinthebrain,”

Psychologicalreview,volume65,number6,1958.

4MarvinMinskyandSeymourA.Papert,Perceptrons:Anintroductiontocomputationalgeometry,MITPress,January1969.

5DavidE.Rumelhart,GeoffreyE.Hinton,andRonaldJ.Williams,“Learningrepresentationsbyback-propagatingerrors,”Nature,volume323,October1986;foradiscussionofLinnainmaa’sroleseeJuergenSchmidhuber,Whoinventedbackpropagation?,Blogpost

http://people.idsia.ch/~juergen/who-invented-backpropagation.html,

2014.

6YannLeCun,PatrickHaffner,LeonBotton,andYoshuaBengio,Objectrecognitionwithgradient-basedlearning,ProceedingsoftheIEEE,November1998.

7JohnHopfield,Neuralnetworkdsandphysicalsystemswithemergentcollectivecomputationalabilities,PNAS,April1982.

8SeppHochreiterandJuergenSchmidhuber,“Longshort-termmemory,”NeuralComputation,volume9,number8,December1997.

9AlexKrizhevsky,IlyaSutskever,andGeoffreyE.Hinton,ImageNetclassificationwithdeepconvolutionalneuralnetworks,NIPS12proceedingsofthe25thInternationalConferenceonNeuralInformationProcessingSystems,December2012.

10JeffreyDeanetal.,Largescaledistributeddeepnetworks,NIPS2012.

11RichardS.SuttonandAndrewG.Barto,Reinforcementlearning:Anintroduction,MITPress,1998.

12IanJ.Goodfellow,Generativeadversarialnetworks,ArXiv,June2014.

Neuralnetworksareasubsetofmachinelearningtechniques.Essentially,theyareAIsystemsbasedonsimulatingconnected“neuralunits,”looselymodelingthewaythatneuronsinteractinthebrain.Computationalmodelsinspiredbyneuralconnectionshavebeenstudiedsincethe1940sandhavereturnedtoprominenceascomputerprocessingpowerhasincreasedandlargetrainingdatasetshavebeenusedtosuccessfullyanalyzeinputdatasuchasimages,video,andspeech.AIpractitionersrefertothesetechniquesas“deeplearning,”sinceneuralnetworkshavemany(“deep”)layersofsimulatedinterconnectedneurons.Beforedeeplearning,neuralnetworksoftenhadonlythreetofive

layersanddozensofneurons;deeplearningnetworkscanhaveseventotenormorelayers,withsimulatedneuronsnumberingintothemillions.

Inthispaper,weanalyzedtheapplicationsandvalueofthreeneuralnetworktechniques:

Feedforwardneuralnetworks.Oneofthemostcommontypesofartificialneuralnetwork.Inthisarchitecture,informationmovesinonlyonedirection,forward,fromtheinputlayer,throughthe“hidden”layers,totheoutputlayer.Therearenoloopsinthenetwork.Thefirstsingle-neuronnetworkwasproposedin1958byAIpioneerFrankRosenblatt.Whiletheideaisnotnew,advancesincomputingpower,trainingalgorithms,andavailabledataledtohigherlevelsofperformancethanpreviouslypossible.

Recurrentneuralnetworks(RNNs).Artificialneuralnetworkswhoseconnectionsbetweenneuronsincludeloops,well-suitedforprocessingsequencesofinputs,whichmakesthemhighlyeffectiveinawiderangeofapplications,fromhandwriting,totexts,tospeechrecognition.InNovember2016,OxfordUniversityresearchersreportedthatasystembasedonrecurrentneuralnetworks(andconvolutionalneuralnetworks)hadachieved95percentaccuracyinreadinglips,outperformingexperiencedhumanlipreaders,whotestedat52percentaccuracy.

Convolutionalneuralnetworks(CNNs).Artificialneuralnetworksinwhichtheconnectionsbetweenneurallayersareinspiredbytheorganizationoftheanimalvisualcortex,theportionofthebrainthatprocessesimages,wellsuitedforvisualperceptiontasks.

Weestimatedthepotentialofthosethreedeepneuralnetworktechniquestocreatevalue,aswellasothermachinelearningtechniquessuchastree-basedensemblelearning,classifiers,andclustering,andtraditionalanalyticssuchasdimensionalityreductionandregression.

Forourusecases,wealsoconsideredtwoothertechniques—generativeadversarialnetworks(GANs)andreinforcementlearning—butdidnotincludetheminourpotentialvalueassessmentofAI,sincetheyremainnascenttechniquesthatarenotyetwidelyappliedinbusinesscontexts.However,aswenoteintheconcludingsectionofthispaper,theymayhaveconsiderablerelevanceinthefuture.

Generativeadversarialnetworks(GANs).Theseusuallyusetwoneuralnetworkscontestingeachotherinazero-sumgameframework(thus“adversarial”).GANscanlearntomimicvariousdistributionsofdata(forexampletext,speech,andimages)andarethereforevaluableingeneratingtestdatasetswhenthesearenotreadilyavailable.

Reinforcementlearning.Thisisasubfieldofmachinelearninginwhichsystemsaretrainedbyreceivingvirtual“rewards”or“punishments,”essentiallylearningbytrialanderror.GoogleDeepMindhasusedreinforcementlearningtodevelopsystemsthatcanplaygames,includingvideogamesandboardgamessuchasGo,betterthanhumanchampions.

PROBLEMTYPESANDTHEANALYTICTECHNIQUESTHATCANBEAPPLIEDTOSOLVETHEM

Inabusinesssetting,thoseanalytictechniquescanbeappliedtosolvereal-lifeproblems.Forthisresearch,wecreatedataxonomyofhigh-levelproblemtypes,characterizedbytheinputs,outputs,andpurposeofeach.Acorrespondingsetofanalytictechniquescanbeappliedtosolvetheseproblems.Theseproblemtypesinclude:

Classification.Basedonasetoftrainingdata,categorizenewinputsasbelongingtooneofasetofcategories.Anexampleofclassificationisidentifyingwhetheranimagecontainsaspecifictypeofobject,suchasatruckoracar,oraproductofacceptablequalitycomingfromamanufacturingline.

Continuousestimation.Basedonasetoftrainingdata,estimatethenextnumericvalueinasequence.Thistypeofproblemissometimesdescribedas“prediction,”particularlywhenitisappliedtotimeseriesdata.Oneexampleofcontinuousestimationisforecastingthesalesdemandforaproduct,basedonasetofinputdatasuchasprevioussalesfigures,consumersentiment,andweather.Anotherexampleispredictingthepriceofrealestate,suchasabuilding,usingdatadescribingthepropertycombinedwithphotosofit.

Clustering.Theseproblemsrequireasystemtocreateasetofcategories,forwhichindividualdatainstanceshaveasetofcommonorsimilarcharacteristics.Anexampleofclusteringiscreatingasetofconsumersegmentsbasedondataaboutindividualconsumers,includingdemographics,preferences,andbuyerbehavior.

Allotheroptimization.Theseproblemsrequireasystemtogenerateasetofoutputsthatoptimizeoutcomesforaspecificobjectivefunction(someoftheotherproblemtypescanbeconsideredtypesofoptimization,sowedescribetheseas“allother”optimization).Generatingarouteforavehiclethatcreatestheoptimumcombinationoftimeandfueluseisanexampleofoptimization.

Anomalydetection.Givenatrainingsetofdata,determinewhetherspecificinputsareoutoftheordinary.Forinstance,asystemcouldbetrainedonasetofhistoricalvibrationdataassociatedwiththeperformanceofanoperatingpieceofmachinery,andthendeterminewhetheranewvibrationreadingsuggeststhatthemachineisnotoperatingnormally.Notethatanomalydetectioncanbeconsideredasubcategoryofclassification.

Ranking.Rankingalgorithmsareusedmostoftenininformationretrievalproblemsinwhichtheresultsofaqueryorrequestneedstobeorderedbysomecriterion.

Recommendationsystemssuggestingnextproducttobuyusethesetypesofalgorithmsasafinalstep,sortingsuggestionsbyrelevance,beforepresentingtheresultstotheuser.

Recommendations.Thesesystemsproviderecommendations,basedonasetoftrainingdata.Acommonexampleofrecommendationsaresystemsthatsuggestthe“nextproducttobuy”foracustomer,basedonthebuyingpatternsofsimilarindividuals,andtheobservedbehaviorofthespecificperson.

Datageneration.Theseproblemsrequireasystemtogenerateappropriatelynoveldatabasedontrainingdata.Forinstance,amusiccompositionsystemmightbeusedtogeneratenewpiecesofmusicinaparticularstyle,afterhavingbeentrainedonpiecesofmusicinthatstyle.

Exhibit2illustratestherelativetotalvalueoftheseproblemtypesacrossourdatabaseofusecases,alongwithsomeofthesampleanalyticstechniquesthatcanbeusedtosolveeachproblemtype.Themostprevalentproblemtypesareclassification,continuousestimation,andclustering,sugge

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论