版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SurfaceTopography:MetrologyandProperties
PAPER•OPENACCESS
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies
FrancescaGherardi,ClémentHole,EwanCampbelletal.
GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,ÇalayanBalkaya,Ayselerenetal.
UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping
WHandayani,EAAyuningtyas,FSCandraRetal.
ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36
Surf.Topogr.:Metrol.Prop.10(2022)044001
/10.1088/2051-672X/ac9492
OPENACCESS
RECEIVED
5February2022
REVISED
25August2022
ACCEPTEDFORPUBLICATION
23September2022
PUBLISHED
3October2022
Originalcontentfromthisworkmaybeusedunderthetermsofthe
Creative
CommonsAttribution4.0
licence
.
Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PAPER
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
AlexandraKaramitrou
1
,∗
,FraserSturt
1
,PetrosBogiatzis
2
andDavidBeresford-Jones
3
1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom
2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom
3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom
∗Authortowhomanycorrespondenceshouldbeaddressed.
E-mail:
a.karamitrou@soton.ac.uk
Keywords:archaeology,machinelearning,artificialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable
online
AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthefieldofartificialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressignificantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedefficientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidentifiedareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.
Introduction
Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves
1936
,BewleyandRaczkowski
2002
;Mossunetal
2013
;Lambers
2018
).Forexample,asearchforscientificpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscientificresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(
https://app.
dimensions.ai
;accessedinMay2022).
Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light
detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal
2016
;Tamiminiaetal
2020
).Thesedataholdsig-nificantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasignificantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.
ArtificialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),
©2022TheAuthor(s).PublishedbyIOPPublishingLtd
Surf.Topogr.:Metrol.Prop.10(2022)044001
AKaramitrouetal
PAGE
10
imitatinghumanintelligence(e.g.,Dey,
2016
;Copeland
2020
).
Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensignificantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik
1995
;Kaoetal
2004
)randomforests(Ho
1995
;Ho
1998
),K-means(Caoetal
2009
;JinandHan,
2011
;Qietal
2017
)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman
1982
;Baxter
2009
;MenzeandUr
2012
;Floresetal
2019
;Orengoetal
2020
).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysignificantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsignificant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospecificcasesandrestrictstheidentificationtofeatureswithlimitedspectralandgeometricvariations.
Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArtificialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(
1980
)aswellasHubelandWiesel(
1959
)thatintroducedthe‘neocognitron’(Fukushima
1980
;
1983
;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthefirsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(
1987
)proposedthetimedelayneuralnetwork(TDNN),oneofthefirstconvolutionalnetworksfollowedbyLeCunetal(
1989
)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal
1998
).Asignificantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-nificantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe
turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,thefirstCNNeversubmitted,namedAlexNet(Krizhevskyetal
2012
),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout∼1000objectcategoriesandtook∼6daysusing2GPUs(Krizhevskyetal
2012
).Sincethen,deepneuralnetworkshavewon
manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber
2015
).Assuch,theyoffercon-siderablepotentialforarchaeology.
Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassification,objectdetection,andsemanticsegmentation.Classificationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofpredefinedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries
1998
)andtoclassifyandidentifytypesofpottery(e.g.,Hörretal
2008
;Anichinietal,
2021
;PawlowiczandDownum
2021
).CaspariandCrespo(
2019
),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(
2021
)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal
2018
;Minaeeetal
2020
).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassificationandobjectidentification(e.g.,Kendalletal
2015
;Garcia-Garciaetal
2018
;Minaeeetal
2020
).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKüçükdemirciandSarris’s(
2020
)usingground-penetratingradarimages.
Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal
2018
;CaspariandCrespo,
2019
;Kazimietal
2019
;Lambersetal
2019
;Rayneetal
2020
;Somraketal
2020
;Soroushetal
2020
;Bonhageetal
2021
;Verschoof-vanderVaartandLandauer
2021
)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary
Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetectionfilter.Ontheleftistheinitialimage,inthemiddleisanedgedetectionfilterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.
objectrecognitioncomprises14,197,122images(Rus-sakovskyetal
2015
).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytootherfields,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-fidentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.
Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal
2015
),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.
Convolutionalneuralnetworks(CNN)
InthissectionwebrieflyintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercanfinddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(
2015
);Wu(
2017
);Alzubaidietal(
2021
);Lietal(
2021
);andUlkuandAkagün-düz(
2022
).
DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Artificialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hopfield
1982
),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin
layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwithafinaloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidentificationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,thefirstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.
Informationispassedbetweenlayersthroughcon-
nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholddefinedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarectifiedlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orratherfilteredout.Theoptimalvaluesofeachweightandbiasaredefinedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.
Thenumberofrequireddeeplayerswithinthe
network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidentifiedandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-fitting)(e.g.,Goodfellowetal
2016
).
Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.
Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period
LaCentinela(ChinchaValley)
−13.450385,−76.171092
Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)
Cahuachi(NazcaValley)
−14.818241,−75.117462
EarlyIntermediate(c.200BC–AD600)
Caral(SupeValley)
−10.890938,−77.521858
LatePreceramic(c.3000–1800BC)
TamboColorado(PiscoValley)
−13.704619,−75.829431
Inca(AD1476–1532)
Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods
Various(LowerIcaValley)
−14.614319,−75.614994
Various(1800BC–AD1534)
NazcaGeoglyphs(PampadeSanJosé,NascaValley)
−14.696486,−75.178422
EarlyIntermediate(200BC–AD600AD)
CerroSechín(CasmaValley)
−9.480703,−78.258997
InitialPeriod(1600BC)
Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal
2015
;Badrinarayananetal
2017
);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsignificantlylessmemoryandcomputationalpower(Longetal
2015
).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal
2021
).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.
SegNet
SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassification.Eachlayerisconvolvedusingasetof2Dfilterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal
2015
;Badrinaraya-nanetal
2017
).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal
2015
).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet
2017
).Inthefinallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin
Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.
blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.
Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassification,i.e.,aclassificationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryoffilterstoproducedensefeaturemaps.ThefinaldecoderoutputisfedintoaSoftMaxclassifier,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen
2015
;Alzubaidietal
2021
).
2.2.Acustom8-layerconvolutionalneuralnetwork
(SimpleNet)
Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.ThefirstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainablefiltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows
howmuchthefiltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethefilterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythefilter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,thefilter’sresponseyieldshighamplitudes(figure
1
).
Thefilterscanbeconceivedofas2Dimageswhose
shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,figure
2
).Next,arectifiedlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommonconfigurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberoffiltersandawindowwith4×4sizeandstride2.Likewise,thisisacommonconfig-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal
2016
).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassifierisapplied,tothefinaloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassificationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop
2006
).The8-layerconvolutionalneuralnetworktechniqueisillustratedinfigure
2
.
Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.
Trainingandoptimisation
Data
Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles
2015
;Bikoulisetal
2018
;CignaandTapete
2018
)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.
Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table
1
).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.
Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table
2
)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure
3
showssomesamplesoflabeledimagesusedinthiswork.
OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘archaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘archaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin
Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.
Parametername Value
Gradientdecayfactor 0.9000
Squaredgradientdecayfactor 0.9990Epsilon 1e-08
Initiallearningrate 1e-04(D500)and1e-03(D2000)
Dropratefactor 0.4
Dropperiod 5
L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30
Minibatchsize 5(D500)and15(D2000)
Shuffle Ateveryepoch
future,withsub-classificationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassifiedeverythingelse,suchassoil,non-pavedroads,andfieldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpgfiles.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.
Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年技术开发外包合同
- 协议买房合同范本
- 《微细加工技术》课件
- 17难忘的泼水节公开课一等奖创新教学设计
- 1《故都的秋》 公开课一等奖创新教学设计统编版高中语文必修上册
- 活动策划简历新人培训
- 年产xx燃料油添加剂项目建议书
- 中小学校岗位安全工作
- 年产xx动物胶项目建议书
- 年产xx光固化机项目建议书
- GB/T 44713-2024节地生态安葬服务指南
- 一年级家长会课件2024-2025学年
- 2024年教资考试时政高频考点141条
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 组拼式全钢大模板施工工法(附示意图)
- 基于人才战略的企业年金在民办高校中的应用研究
- 消防维保年度总结范文(2篇)精选范文
- 天津科技大学 大学物理(下)本科试卷(A卷)(含答案)
- 消防应急组织架构图
- 锅炉安装工程—质量证明书(散装)
- 铁矿矿山环境保护与综合治理方案
评论
0/150
提交评论