版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SurfaceTopography:MetrologyandProperties
PAPER•OPENACCESS
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies
FrancescaGherardi,ClémentHole,EwanCampbelletal.
GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,ÇalayanBalkaya,Ayselerenetal.
UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping
WHandayani,EAAyuningtyas,FSCandraRetal.
ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36
Surf.Topogr.:Metrol.Prop.10(2022)044001
/10.1088/2051-672X/ac9492
OPENACCESS
RECEIVED
5February2022
REVISED
25August2022
ACCEPTEDFORPUBLICATION
23September2022
PUBLISHED
3October2022
Originalcontentfromthisworkmaybeusedunderthetermsofthe
Creative
CommonsAttribution4.0
licence
.
Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PAPER
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
AlexandraKaramitrou
1
,∗
,FraserSturt
1
,PetrosBogiatzis
2
andDavidBeresford-Jones
3
1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom
2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom
3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom
∗Authortowhomanycorrespondenceshouldbeaddressed.
E-mail:
a.karamitrou@soton.ac.uk
Keywords:archaeology,machinelearning,artificialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable
online
AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthefieldofartificialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressignificantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedefficientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidentifiedareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.
Introduction
Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves
1936
,BewleyandRaczkowski
2002
;Mossunetal
2013
;Lambers
2018
).Forexample,asearchforscientificpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscientificresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(
https://app.
dimensions.ai
;accessedinMay2022).
Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light
detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal
2016
;Tamiminiaetal
2020
).Thesedataholdsig-nificantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasignificantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.
ArtificialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),
©2022TheAuthor(s).PublishedbyIOPPublishingLtd
Surf.Topogr.:Metrol.Prop.10(2022)044001
AKaramitrouetal
PAGE
10
imitatinghumanintelligence(e.g.,Dey,
2016
;Copeland
2020
).
Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensignificantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik
1995
;Kaoetal
2004
)randomforests(Ho
1995
;Ho
1998
),K-means(Caoetal
2009
;JinandHan,
2011
;Qietal
2017
)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman
1982
;Baxter
2009
;MenzeandUr
2012
;Floresetal
2019
;Orengoetal
2020
).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysignificantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsignificant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospecificcasesandrestrictstheidentificationtofeatureswithlimitedspectralandgeometricvariations.
Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArtificialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(
1980
)aswellasHubelandWiesel(
1959
)thatintroducedthe‘neocognitron’(Fukushima
1980
;
1983
;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthefirsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(
1987
)proposedthetimedelayneuralnetwork(TDNN),oneofthefirstconvolutionalnetworksfollowedbyLeCunetal(
1989
)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal
1998
).Asignificantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-nificantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe
turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,thefirstCNNeversubmitted,namedAlexNet(Krizhevskyetal
2012
),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout∼1000objectcategoriesandtook∼6daysusing2GPUs(Krizhevskyetal
2012
).Sincethen,deepneuralnetworkshavewon
manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber
2015
).Assuch,theyoffercon-siderablepotentialforarchaeology.
Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassification,objectdetection,andsemanticsegmentation.Classificationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofpredefinedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries
1998
)andtoclassifyandidentifytypesofpottery(e.g.,Hörretal
2008
;Anichinietal,
2021
;PawlowiczandDownum
2021
).CaspariandCrespo(
2019
),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(
2021
)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal
2018
;Minaeeetal
2020
).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassificationandobjectidentification(e.g.,Kendalletal
2015
;Garcia-Garciaetal
2018
;Minaeeetal
2020
).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKüçükdemirciandSarris’s(
2020
)usingground-penetratingradarimages.
Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal
2018
;CaspariandCrespo,
2019
;Kazimietal
2019
;Lambersetal
2019
;Rayneetal
2020
;Somraketal
2020
;Soroushetal
2020
;Bonhageetal
2021
;Verschoof-vanderVaartandLandauer
2021
)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary
Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetectionfilter.Ontheleftistheinitialimage,inthemiddleisanedgedetectionfilterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.
objectrecognitioncomprises14,197,122images(Rus-sakovskyetal
2015
).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytootherfields,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-fidentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.
Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal
2015
),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.
Convolutionalneuralnetworks(CNN)
InthissectionwebrieflyintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercanfinddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(
2015
);Wu(
2017
);Alzubaidietal(
2021
);Lietal(
2021
);andUlkuandAkagün-düz(
2022
).
DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Artificialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hopfield
1982
),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin
layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwithafinaloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidentificationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,thefirstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.
Informationispassedbetweenlayersthroughcon-
nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholddefinedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarectifiedlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orratherfilteredout.Theoptimalvaluesofeachweightandbiasaredefinedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.
Thenumberofrequireddeeplayerswithinthe
network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidentifiedandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-fitting)(e.g.,Goodfellowetal
2016
).
Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.
Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period
LaCentinela(ChinchaValley)
−13.450385,−76.171092
Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)
Cahuachi(NazcaValley)
−14.818241,−75.117462
EarlyIntermediate(c.200BC–AD600)
Caral(SupeValley)
−10.890938,−77.521858
LatePreceramic(c.3000–1800BC)
TamboColorado(PiscoValley)
−13.704619,−75.829431
Inca(AD1476–1532)
Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods
Various(LowerIcaValley)
−14.614319,−75.614994
Various(1800BC–AD1534)
NazcaGeoglyphs(PampadeSanJosé,NascaValley)
−14.696486,−75.178422
EarlyIntermediate(200BC–AD600AD)
CerroSechín(CasmaValley)
−9.480703,−78.258997
InitialPeriod(1600BC)
Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal
2015
;Badrinarayananetal
2017
);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsignificantlylessmemoryandcomputationalpower(Longetal
2015
).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal
2021
).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.
SegNet
SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassification.Eachlayerisconvolvedusingasetof2Dfilterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal
2015
;Badrinaraya-nanetal
2017
).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal
2015
).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet
2017
).Inthefinallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin
Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.
blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.
Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassification,i.e.,aclassificationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryoffilterstoproducedensefeaturemaps.ThefinaldecoderoutputisfedintoaSoftMaxclassifier,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen
2015
;Alzubaidietal
2021
).
2.2.Acustom8-layerconvolutionalneuralnetwork
(SimpleNet)
Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.ThefirstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainablefiltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows
howmuchthefiltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethefilterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythefilter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,thefilter’sresponseyieldshighamplitudes(figure
1
).
Thefilterscanbeconceivedofas2Dimageswhose
shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,figure
2
).Next,arectifiedlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommonconfigurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberoffiltersandawindowwith4×4sizeandstride2.Likewise,thisisacommonconfig-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal
2016
).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassifierisapplied,tothefinaloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassificationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop
2006
).The8-layerconvolutionalneuralnetworktechniqueisillustratedinfigure
2
.
Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.
Trainingandoptimisation
Data
Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles
2015
;Bikoulisetal
2018
;CignaandTapete
2018
)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.
Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table
1
).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.
Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table
2
)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure
3
showssomesamplesoflabeledimagesusedinthiswork.
OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘archaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘archaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin
Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.
Parametername Value
Gradientdecayfactor 0.9000
Squaredgradientdecayfactor 0.9990Epsilon 1e-08
Initiallearningrate 1e-04(D500)and1e-03(D2000)
Dropratefactor 0.4
Dropperiod 5
L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30
Minibatchsize 5(D500)and15(D2000)
Shuffle Ateveryepoch
future,withsub-classificationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassifiedeverythingelse,suchassoil,non-pavedroads,andfieldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpgfiles.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.
Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年网络安全防护协议agreement3篇
- 2025年度CFG桩施工项目施工安全教育与培训合同3篇
- 2024年离婚赔偿协议书
- 2024年版权授权使用协议书
- 2025年度绿色养殖场养殖工劳动合同3篇
- 2024年货车租赁合同(含装卸)
- 2024年中国喷油泵总成市场调查研究报告
- 2024年防火门品牌授权协议3篇
- 2024年粉煤灰废弃物处理与再利用合同2篇
- 2025年度电子商务平台合同签订与履行规范2篇
- 2024年人工智能发展引领AI应用创新
- 四川省眉山市2023-2024学年高二上学期期末生物试题【含答案解析】
- 语言习得理论与实践应用
- 中国动画赏析
- 地方国企重组改制实施方案
- 空压机及气罐故障事故应急救援预案
- 新教材北师大版高中数学选择性必修第一册全册各章节知识点考点重点难点解题规律归纳总结
- 劳务派遣劳务外包服务方案(技术方案)
- 2023年生产部技术员年度总结及下一年工作计划
- 会议服务标准细则范本
- 喷淋系统安装施工工艺方案
评论
0/150
提交评论