利用人工智能深度学习网络进行考古遗址检测_第1页
利用人工智能深度学习网络进行考古遗址检测_第2页
利用人工智能深度学习网络进行考古遗址检测_第3页
利用人工智能深度学习网络进行考古遗址检测_第4页
利用人工智能深度学习网络进行考古遗址检测_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SurfaceTopography:MetrologyandProperties

PAPER•OPENACCESS

Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites

Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001

Viewthe

articleonline

forupdatesandenhancements.

Youmayalsolike

UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies

FrancescaGherardi,ClémentHole,EwanCampbelletal.

GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,ÇalayanBalkaya,Ayselerenetal.

UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping

WHandayani,EAAyuningtyas,FSCandraRetal.

ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36

Surf.Topogr.:Metrol.Prop.10(2022)044001

/10.1088/2051-672X/ac9492

OPENACCESS

RECEIVED

5February2022

REVISED

25August2022

ACCEPTEDFORPUBLICATION

23September2022

PUBLISHED

3October2022

Originalcontentfromthisworkmaybeusedunderthetermsofthe

Creative

CommonsAttribution4.0

licence

.

Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.

PAPER

Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites

AlexandraKaramitrou

1

,∗

,FraserSturt

1

,PetrosBogiatzis

2

andDavidBeresford-Jones

3

1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom

2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom

3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom

∗Authortowhomanycorrespondenceshouldbeaddressed.

E-mail:

a.karamitrou@soton.ac.uk

Keywords:archaeology,machinelearning,artificialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable

online

AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthefieldofartificialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressignificantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedefficientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidentifiedareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.

Introduction

Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves

1936

,BewleyandRaczkowski

2002

;Mossunetal

2013

;Lambers

2018

).Forexample,asearchforscientificpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscientificresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(

https://app.

dimensions.ai

;accessedinMay2022).

Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light

detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal

2016

;Tamiminiaetal

2020

).Thesedataholdsig-nificantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasignificantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.

ArtificialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),

©2022TheAuthor(s).PublishedbyIOPPublishingLtd

Surf.Topogr.:Metrol.Prop.10(2022)044001

AKaramitrouetal

PAGE

10

imitatinghumanintelligence(e.g.,Dey,

2016

;Copeland

2020

).

Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensignificantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik

1995

;Kaoetal

2004

)randomforests(Ho

1995

;Ho

1998

),K-means(Caoetal

2009

;JinandHan,

2011

;Qietal

2017

)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman

1982

;Baxter

2009

;MenzeandUr

2012

;Floresetal

2019

;Orengoetal

2020

).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysignificantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsignificant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospecificcasesandrestrictstheidentificationtofeatureswithlimitedspectralandgeometricvariations.

Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArtificialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(

1980

)aswellasHubelandWiesel(

1959

)thatintroducedthe‘neocognitron’(Fukushima

1980

;

1983

;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthefirsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(

1987

)proposedthetimedelayneuralnetwork(TDNN),oneofthefirstconvolutionalnetworksfollowedbyLeCunetal(

1989

)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal

1998

).Asignificantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-nificantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe

turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,thefirstCNNeversubmitted,namedAlexNet(Krizhevskyetal

2012

),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout∼1000objectcategoriesandtook∼6daysusing2GPUs(Krizhevskyetal

2012

).Sincethen,deepneuralnetworkshavewon

manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber

2015

).Assuch,theyoffercon-siderablepotentialforarchaeology.

Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassification,objectdetection,andsemanticsegmentation.Classificationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofpredefinedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries

1998

)andtoclassifyandidentifytypesofpottery(e.g.,Hörretal

2008

;Anichinietal,

2021

;PawlowiczandDownum

2021

).CaspariandCrespo(

2019

),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(

2021

)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal

2018

;Minaeeetal

2020

).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassificationandobjectidentification(e.g.,Kendalletal

2015

;Garcia-Garciaetal

2018

;Minaeeetal

2020

).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKüçükdemirciandSarris’s(

2020

)usingground-penetratingradarimages.

Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal

2018

;CaspariandCrespo,

2019

;Kazimietal

2019

;Lambersetal

2019

;Rayneetal

2020

;Somraketal

2020

;Soroushetal

2020

;Bonhageetal

2021

;Verschoof-vanderVaartandLandauer

2021

)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary

Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetectionfilter.Ontheleftistheinitialimage,inthemiddleisanedgedetectionfilterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.

objectrecognitioncomprises14,197,122images(Rus-sakovskyetal

2015

).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytootherfields,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-fidentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.

Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal

2015

),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.

Convolutionalneuralnetworks(CNN)

InthissectionwebrieflyintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercanfinddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(

2015

);Wu(

2017

);Alzubaidietal(

2021

);Lietal(

2021

);andUlkuandAkagün-düz(

2022

).

DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Artificialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hopfield

1982

),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin

layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwithafinaloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidentificationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,thefirstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.

Informationispassedbetweenlayersthroughcon-

nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholddefinedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarectifiedlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orratherfilteredout.Theoptimalvaluesofeachweightandbiasaredefinedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.

Thenumberofrequireddeeplayerswithinthe

network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidentifiedandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-fitting)(e.g.,Goodfellowetal

2016

).

Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.

Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.

Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period

LaCentinela(ChinchaValley)

−13.450385,−76.171092

Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)

Cahuachi(NazcaValley)

−14.818241,−75.117462

EarlyIntermediate(c.200BC–AD600)

Caral(SupeValley)

−10.890938,−77.521858

LatePreceramic(c.3000–1800BC)

TamboColorado(PiscoValley)

−13.704619,−75.829431

Inca(AD1476–1532)

Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.

Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods

Various(LowerIcaValley)

−14.614319,−75.614994

Various(1800BC–AD1534)

NazcaGeoglyphs(PampadeSanJosé,NascaValley)

−14.696486,−75.178422

EarlyIntermediate(200BC–AD600AD)

CerroSechín(CasmaValley)

−9.480703,−78.258997

InitialPeriod(1600BC)

Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal

2015

;Badrinarayananetal

2017

);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsignificantlylessmemoryandcomputationalpower(Longetal

2015

).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal

2021

).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.

SegNet

SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassification.Eachlayerisconvolvedusingasetof2Dfilterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal

2015

;Badrinaraya-nanetal

2017

).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal

2015

).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet

2017

).Inthefinallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin

Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.

blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.

Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassification,i.e.,aclassificationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryoffilterstoproducedensefeaturemaps.ThefinaldecoderoutputisfedintoaSoftMaxclassifier,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen

2015

;Alzubaidietal

2021

).

2.2.Acustom8-layerconvolutionalneuralnetwork

(SimpleNet)

Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.ThefirstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainablefiltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows

howmuchthefiltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethefilterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythefilter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,thefilter’sresponseyieldshighamplitudes(figure

1

).

Thefilterscanbeconceivedofas2Dimageswhose

shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,figure

2

).Next,arectifiedlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommonconfigurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberoffiltersandawindowwith4×4sizeandstride2.Likewise,thisisacommonconfig-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal

2016

).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassifierisapplied,tothefinaloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassificationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop

2006

).The8-layerconvolutionalneuralnetworktechniqueisillustratedinfigure

2

.

Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.

Trainingandoptimisation

Data

Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles

2015

;Bikoulisetal

2018

;CignaandTapete

2018

)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.

Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table

1

).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.

Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table

2

)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure

3

showssomesamplesoflabeledimagesusedinthiswork.

OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘archaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘archaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin

Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.

Parametername Value

Gradientdecayfactor 0.9000

Squaredgradientdecayfactor 0.9990Epsilon 1e-08

Initiallearningrate 1e-04(D500)and1e-03(D2000)

Dropratefactor 0.4

Dropperiod 5

L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30

Minibatchsize 5(D500)and15(D2000)

Shuffle Ateveryepoch

future,withsub-classificationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassifiedeverythingelse,suchassoil,non-pavedroads,andfieldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpgfiles.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.

Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论