初中数学数与式总复习_第1页
初中数学数与式总复习_第2页
初中数学数与式总复习_第3页
初中数学数与式总复习_第4页
初中数学数与式总复习_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

②多项式代数式分式分式根式根式(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。(2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.(4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.

要会判断给出的项是否同类项,知道同类项可以合并.即其中的X可以代表单项式中的字母部分,代表其他式子。

3.整式的运算

(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:

(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(ii)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.遇到特殊形式的多项式乘法,还可以直接算:(3)整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。单项式的乘方要用到幂的乘方性质与积的乘方性质:多项式的乘方只涉及【例题经典】代数式的有关概念例1、已知-1<b<0,0<a<1,那么在代数式a-b、a+b、a+b2、a2+b中,对任意的a、b,对应的代数式的值最大的是()(A)a+b(B)a-b(C)a+b2(D)a2+b评析:本题一改将数值代人求值的面貌,要求学生有良好的数感。同类项的概念例1若单项式2am+2nbn-2m+2与a5b7是同类项,求nm的值.【点评】考查同类项的概念,由同类项定义可得解出即可。例2一套住房的平面图如右图所示,其中卫生间、厨房的面积和是()A.4xyB.3xyC.2xyD.xy评析:本题是一道数形结合题,考查了平面图形的面积的计算、合并同类项等知识,同时又隐含着对代数式的理解。幂的运算性质例1(1)am·an=_______(m,n都是正整数);(2)am÷an=________(a≠0,m,n都是正整数,且m>n),特别地:a0=1(a≠0),a-p=(a≠0,p是正整数);(3)(am)n=______(m,n都是正整数);(4)(ab)n=________(n是正整数)(5)平方差公式:(a+b)(a-b)=_________.(6)完全平方公式:(a±b)2=__________.【点评】能够熟练掌握公式进行运算.例2.下列各式计算正确的是().(A)(a5)2=a7(B)2x-2=(c)4a3·2a2=8a6(D)a8÷a2=a6分析:考查学生对幂的运算性质及同类项法则的掌握情况。例3.下列各式中,运算正确的是()A.a2a3=a6B.(-a+2b)2=(a-2b)2c.(a+b≠O)D.分析:考查学生对幂的运算性质例4、(泰州市)下列运算正确的是A.;B.(-2x)3=-2x3;C.(a-b)(-a+b)=-a2-2ab-b2;D.评析:本题意在考查学生幂的运算法则、整式的乘法、二次根式的运算等的掌握情况。整式的化简与运算例5计算:9xy·(-x2y)=;先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x其中x=3,y=-1.5.【点评】本例题主要考查整式的综合运算,学生认真分析题目中的代数式结构,灵活运用公式,才能使运算简便准确.【回顾与思考】因式分解〖考查重点与常见题型〗考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用写出结果.(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果有两个根X1,X2,那么【例题经典】掌握因式分解的概念及方法例1、分解因式:①x3-x2=_______________________;②x2-81=______________________;③x2+2x+1=___________________;④a2-a+=_________________;⑤a3-2a2+a=_____________________.【点评】运用提公因式法,公式法及两种方法的综合来解答即可。例2.把式子x2-y2-x—y分解因式的结果是..分析:考查运用提公因式法进行分解因式。例3.分解因式:a2—4a+4=分析:考查运用公式法分解因式。分式1.考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是()(A)-40EQ=1(B)(-2)-1=EQEQ\F(,)EQeq\f(1,2)(C)(-3m-n)2=9m-n(D)(a+b)-1=a-1+b-12.考查分式的化简求值。在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。注意解答有关习题时,要按照试题的要求,先化简后求值,化简要认真仔细,如:化简并求值:eq\f(x,(x-y)2).eq\f(x3-y3,x2+xy+y2)+(eq\f(2x+2,x-y)–2),其中x=cos30°,y=sin90°知识要点1.分式的有关概念设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M为不等于零的整式)3.分式的运算(分式的运算法则与分数的运算法则类似).(异分母相加,先通分);4.零指数5.负整数指数注意正整数幂的运算性质可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.熟练掌握分式的概念:性质及运算例4(1)若分式的值是零,则x=______.【点评】分式值为0的条件是:有意义且分子为0.(2)同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠-4且x≠-2B.x=-4或x=2C.x=-4D.x=2(3)如果把分式中的x和y都扩大10倍,那么分式的值()A.扩大10倍B.缩小10倍C.不变D.扩大2倍例5:化简()÷的结果是.分析:考查分式的混合运算,根据分式的性质和运算法则。例6.已知a=,求的值.分析:考查分式的四则运算,根据分式的性质和运算法则,分解因式进行化简。例7.已知|a-4|+=0,计算的值答案:由条件,得a-4=0且b-9=0∴a=4b=9原式=a2/b2例8.计算(x—y+)(x+y-)的正确结果是()Ay2-x2B.x2-y2c.x2-4y2D.4x2-y2分析:考查分式的通分及四则运算。因式分解与分式化简综合应用例1先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【点评】注意代入的数值不能使原分式分母为零,否则无意义.例2、有一道题“先化简,再求值:,其中。”小玲做题时把“”错抄成了“”,但她的计算结果也是正确的,请你解释这是怎么回事?点评:化简可发现结果是,因此无论还是其计算结果都是7。可见现在的考试特别重视应用和理解。【回顾与思考】内容分析1.二次根式的有关概念(1)二次根式式子叫做二次根式.注意被开方数只能是正数或O.(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.2.二次根式的性质3.二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.(2)三次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.〖考查重点与常见题型〗1.考查平方根、算术平方根、立方根的概念。有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。2.考查最简二次根式、同类二次根式概念。有关习题经常出现在选择题中。3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。【例题经典】理解二次根式的概念和性质例1(1)式子有意义的x取值范围是_

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论