




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页10天刷完高考真题(新高考Ⅰ和Ⅱ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)新高考真题限时训练打卡第八天Ⅱ真题限时训练新高考真题限时训练打卡第八天难度:一般建议用时:60分钟一、单选题1.(2021·全国·高考真题)设集合,则(
)A. B. C. D.【答案】B【分析】根据交集、补集的定义可求.【详解】由题设可得,故,故选:B.2.(2021·全国·高考真题)已知,则(
)A. B. C. D.【答案】C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为,故,故故选:C.3.(2021·全国·高考真题)某物理量的测量结果服从正态分布,下列结论中不正确的是(
)A.越小,该物理量在一次测量中在的概率越大B.该物理量在一次测量中大于10的概率为0.5C.该物理量在一次测量中小于9.99与大于10.01的概率相等D.该物理量在一次测量中落在与落在的概率相等【答案】D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.4.(2021·全国·高考真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则(
)A.甲与丙相互独立 B.甲与丁相互独立C.乙与丙相互独立 D.丙与丁相互独立【答案】B【分析】根据独立事件概率关系逐一判断【详解】,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立5.(2021·全国·高考真题)已知,,,则下列判断正确的是(
)A. B. C. D.【答案】C【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.6.(2021·全国·高考真题)若过点可以作曲线的两条切线,则(
)A. B.C. D.【答案】D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.
故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.二、多选题7.(2021·全国·高考真题)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则(
)A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同【答案】CD【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD8.(2022·全国·高考真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则(
)A. B. C. D.【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于,因为为偶函数,所以即①,所以,所以关于对称,则,故C正确;对于,因为为偶函数,,,所以关于对称,由①求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于对称,从而周期,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,显然A,D错误,选BC.故选:BC.[方法三]:因为,均为偶函数,所以即,,所以,,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题9.(2022·全国·高考真题)写出与圆和都相切的一条直线的方程.【答案】或或【分析】先判断两圆位置关系,分情况讨论即可.【详解】[方法一]:显然直线的斜率不为0,不妨设直线方程为,于是,故①,于是或,再结合①解得或或,所以直线方程有三条,分别为,,填一条即可[方法二]:设圆的圆心,半径为,圆的圆心,半径,则,因此两圆外切,由图像可知,共有三条直线符合条件,显然符合题意;又由方程和相减可得方程,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC的方程为,直线OC与直线的交点为,设过该点的直线为,则,解得,从而该切线的方程为填一条即可[方法三]:圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.10.(2022·全国·高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是.【答案】【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】∵,∴,设切点为,则,切线斜率,切线方程为:,∵切线过原点,∴,整理得:,∵切线有两条,∴,解得或,∴的取值范围是,故答案为:四、解答题11.(2022·全国·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.(1)若,求B;(2)求的最小值.【答案】(1);(2).【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.【详解】(1)因为,即,而,所以;(2)由(1)知,,所以,而,所以,即有,所以所以.当且仅当时取等号,所以的最小值为.12.(2022·全国·高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)岁;(2);(3).【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设{一人患这种疾病的年龄在区间},根据对立事件的概率公式即可解出;(3)根据条件概率公式即可求出.【详解】(1)平均年龄
(岁).(2)设{一人患这种疾病的年龄在区间},所以.(3)设“任选一人年龄位于区间[40,50)”,“从该地区中任选一人患这种疾病”,则由已知得:,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为.13.(2022·全国·高考真题)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围;(3)设,证明:.【答案】(1)的减区间为,增区间为.(2)(3)见解析【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当时,,则,当时,,当时,,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有,
所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.Ⅲ精选模拟题预测一、单选题1.已知集合,,则的真子集个数为(
)A.2 B.3 C.4 D.5【答案】B【分析】根据条件,得到,即可求出结果.【详解】因为,,得到,所以的真子集个数为,故选:B.2.已知复数的共轭复数是,若,则(
)A. B. C. D.【答案】A【分析】先由,得到,利用复数的除法运算法则求出,进而求出复数即可.【详解】由于,得,则,故选:A.3.某校有200人参加联合考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(不低于120分)的人数占总人数的,则此次数学成绩在90分到120分之间的人数约为(
)A.75 B.105 C.125 D.150【答案】D【分析】根据给定条件,利用正态分布的对称性求出成绩在90分到120分之间的概率即可求解作答.【详解】由数学考试成绩近似服从正态分布,得,因此,所以此次数学考试成绩在分到120分之间的人数约为.故选:D4.若,则(
)A.事件与互斥 B.事件与相互独立C. D.【答案】B【分析】对于A,由即可判断,对于B,由对立事件概率公式以及独立乘法公式验证;对于C,由即可判断;对于D,由即可判断.【详解】对于AB,,从而,故A错误B正确;对于C,,故C错误;对于D,,故D错误.故选:B.5.已知,则(
)A. B.C. D.【答案】D【分析】由对数函数和指数函数的性质可得,即可得出答案.【详解】因为,所以.故选:D.6.已知函数,只有一个极值点,则实数m的取值范围为(
)A. B.C. D.【答案】A【分析】首先求函数的导数,利用参变分离得,再构造函数,利用导数分析函数的图象,转化函数的交点问题,即可求解.【详解】,令,得,设,,得,当时,,函数在区间单调递增,当时,,函数在区间单调递减,当时,的最大值为,并且时,,时,,如图,画出函数的图象,因为函数只有一个极值点,即与只有一个交点,且,所以.故选:A二、多选题7.某种金属材料的长度随环境温度的改变而变化,某试验室从9时到16时每隔一个小时测得同一个金属材料的长度依次为3.62,3.61,3.65,3.62,3.63,3.63,3.62,3.64(单位:cm),则(
)A.该金属材料的长度的极差为0.04cmB.该金属材料的长度的众数为3.63cmC.该金属材料的长度的中位数为3.625cmD.该金属材料的长度的第80百分位数为3.63cm【答案】AC【分析】A选项,最大值减去最小值,得到极差;B选项,3.62cm出现次数最多,为众数;C选项,从小到大排序,选取第4个和第5个的数的平均数作为中位数;D选项,利用百分位数的定义进行求解.【详解】A选项,最小值为3.61cm,最大值为3.65cm,故极差为cm,A正确;B选项,3.62cm出现了3次,出现次数最多,故众数为3.62cm,B错误;C选项,将数据从小到大排序,3.61,3.62,3.62,3.62,3.63,3.63,3.64,3.65,选取第4个和第5个的数的平均数作为中位数,即cm,C正确;D选项,将数据从小到大排序,3.61,3.62,3.62,3.62,3.63,3.63,3.64,3.65,,故选取第7个数作为第80百分位数,即3.64cm,D错误.故选:AC.8.已知非零函数及其导函数的定义域均为,与均为偶函数,则(
)A. B.C. D.【答案】BD【分析】由题意结合赋值法可得函数与的对称性及周期性,结合性质逐项分析计算即可得.【详解】由与均为偶函数,故,,即有,,故关于对称,关于对称,又,故,即,故关于对称,由,可得,即有,为常数,即关于对称,故,故A错误;即对有、,则,即,故,即,即,故B正确;对有,,关于对称且关于对称,,有,即,故,即,故为周期为的周期函数,有,即,故关于对称,不能得到,故C错误;由关于对称,故,,由为周期为的周期函数,且关于对称,故关于对称,故,由关于对称,关于对称,故关于对称,故,,故,故D正确.故选:BD.【点睛】结论点睛:解决抽象函数的求值、性质判断等问题,常见结论:(1)关于对称:若函数关于直线轴对称,则,若函数关于点中心对称,则,反之也成立;(2)关于周期:若,或,或,可知函数的周期为.三、填空题9.古希腊数学家阿波罗尼斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代数学的重要成果,其中有这样一个结论:平面内与两点距离的比为常数的点的轨迹是圆,后人称这个圆为阿波罗尼斯圆,已知点,,动点满足,则点的轨迹与圆的公切线的条数为.【答案】2【分析】利用阿波罗尼斯圆定义可得点的轨迹方程为,由两圆圆心距与半径的关系可得两圆相交,可得有2条公切线.【详解】由题意设,易知,即可得,整理得点的轨迹方程为,其轨迹是以为圆心,以2为半径的圆,而圆的圆心坐标为,半径为1,可得两圆的圆心距为2,大于,小于,则动点的轨迹与圆的位置关系是相交.故公切线的条数为2.故答案为:210.曲率是衡量曲线弯曲程度的重要指标定义:若是的导函数,是的导函数,则曲线在点处的曲率.已知,则曲线在点处的曲率为.【答案】2【分析】计算出及后代入计算即可得.【详解】,,故,,则.故答案为:.四、解答题11.记的内角的对边分别为,已知.(1)求角;(2)若,点为的重心,且,求的面积.【答案】(1)(2)【分析】(1)根据正余弦定理边角互化即可求解,(2)根据重心的性质可得,进而根据余弦定理可得,由面积公式即可求解.【详解】(1)因为,由正弦定理可得,整理得,由余弦定理可得.又因为,所以.(2)设的延长线交于点,因为点为的重心,所以点为中点,又因为,所以.在中,由和,可得.在和中,有,由余弦定理可得故,所以,所以的面积为.12.某校为了让学生有一个良好的学习环境,特制定学生满意度调查表,调查表分值满分为100分.工作人员从中随机抽取了100份调查表将其分值作为样本进行统计,作出频率分布直方图如图.(1)估计此次满意度调查所得的平均分值(同一组中的数据用该组区间的中点值为代表);(2)在选取的100位学生中,男女生人数相同,规定分值在(1)中的以上为满意,低于为不满意,据统计有32位男生满意.据此判断是否有的把握认为“学生满意度与性别有关”?(3)在(2)的条件下,学校从满意度分值低于分的学生中抽取部分进行座谈,先用分层抽样的方式选出8位学生,再从中随机抽取2人,求恰好抽到男女生各一人的概率.附:,其中.【答案】(1)(2)有的把握认为“学生满意度与性别有关”(3)【分析】(1)利用频率分布直方图平均数的求法求解即可;(2)利用(1)的结论及给定信息得到列联表,再计算的观测值,与临界值表比对作答即可得解;(3)求出8位业主中男女人数,利用列举法及古典概率公式即可得解.【详解】(1)根据频率分布直方图知,,所以此次满意度调查中物业所得的平均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 4077.3-2021矿山生态修复工程技术规程第3部分:施工与监理
- DB32/T 3761.44-2021新型冠状病毒肺炎疫情防控技术规范第44部分:货运航班
- DB32/T 3664-2019商品煤检验第三方服务规范
- DB32/T 3611-2019废弃电器电子产品处理业职业病危害预防控制指南
- DB32/T 3514.5-2019电子政务外网建设规范第5部分:安全综合管理平台技术要求与接口规范
- DB32/T 3291-2017城市轨道交通接触网系统维护与检修技术规范
- DB31/T 998-2016能源补给系统道路交通指引标志设置规范第1部分:充换电
- DB31/T 914.3-2021小型游乐设施安全第3部分:运营管理要求
- DB31/T 389-2015防雷装置安全检测技术规范
- 葡萄酒酿造过程中的酿造设备选型与配套技术指南考核试卷
- 在校生《学籍证明》申请表(模板)
- 电梯故障维修记录
- 员工招聘外文翻译文献
- 中国世界文化遗产课件
- 预防接种工作单位资质申请表
- 2022年四川省成都市青羊区七下期末数学试卷
- 智慧健康管理ppt课件
- 天牛的识别与防治PPT演示课件(PPT 99页)
- 英语51阅读理解主旨题(best-title)答题技巧
- 孔距尺寸的标注与孔的位置度公差的确定
- 服装工艺(各工序)单价表
评论
0/150
提交评论