2022年辽宁省大连市中考数学试卷_第1页
2022年辽宁省大连市中考数学试卷_第2页
2022年辽宁省大连市中考数学试卷_第3页
2022年辽宁省大连市中考数学试卷_第4页
2022年辽宁省大连市中考数学试卷_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C. D.﹣2.(3分)下列立体图形中,主视图是圆的是()A. B. C. D.3.(3分)下列计算正确的是()A.=2 B.=﹣3 C.2+3=5 D.(+1)2=34.(3分)如图,平行线AB,CD被直线EF所截,FG平分∠EFD,若∠EFD=70°,则∠EGF的度数是()A.35° B.55° C.70° D.110°5.(3分)六边形内角和的度数是()A.180° B.360° C.540° D.720°6.(3分)不等式4x<3x+2的解集是()A.x>﹣2 B.x<﹣2 C.x>2 D.x<27.(3分)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表所示.则所销售的女鞋尺码的众数是()尺码/cm22.52323.52424.5销售量/双14681A.23.5 B.23.6 C.24 D.24.58.(3分)若关于x的一元二次方程x2+6x+c=0有两个相等的实数根,则c的值是()A.36 B.9 C.6 D.﹣99.(3分)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6 B.3 C.1.5 D.110.(3分)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是()A.y=0.1x B.y=﹣0.1x+30 C.y= D.y=﹣0.1x2+30x二、填空题(本题共6小题,每小题3分,共18分)11.(3分)方程=1的解是.12.(3分)不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是.14.(3分)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是(结果保留π).15.(3分)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为.16.(3分)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A的对应点A'落在EF上,并使折痕经过点B,得到折痕BM,连接MF,若MF⊥BM,AB=6cm,则AD的长是cm.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.(9分)计算:÷﹣.18.(10分)为了解某初级中学落实《中共中央国务院关于全面加强新时代大中小学劳动教育的意见》的实施情况,调查组从该校全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),并对数据进行整理、描述和分析.以下是根据调查结果绘制的统计图表的一部分.平均每周劳动时间频数统计表平均每周劳动时间t/h频数频率1≤t<232≤t<3a0.123≤t<437b4≤t<50.355≤t<6合计c根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)若该校有1000名学生,请估计平均每周劳动时间在3≤t<5范围内的学生人数.19.(10分)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.20.(10分)2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当V=5m3时,ρ=1.98kg/m3.(1)求密度ρ关于体积V的函数解析式;(2)若3≤V≤9,求二氧化碳密度ρ的变化范围.22.(10分)如图,莲花山是大连著名的景点之一.游客可以从山底乘坐索道车到达山顶,索道车运行的速度是1米/秒.小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角约为30°,测得白塔顶部C的仰角约为37°,索道车从A处运行到B处所用时间约为5分钟.(1)索道车从A处运行到B处的距离约为米;(2)请你利用小明测量的数据,求白塔BC的高度.(结果取整数)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)23.(10分)AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,过点A作⊙O的切线,与DO的延长线相交于点E.(1)如图1,求证∠B=∠E;(2)如图2,连接AD,若⊙O的半径为2,OE=3,求AD的长.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,在△ABC中,∠ACB=90°,BC=4,点D在AC上,CD=3,连接DB,AD=DB,点P是边AC上一动点(点P不与点A,D,C重合),过点P作AC的垂线,与AB相交于点Q,连接DQ,设AP=x,△PDQ与△ABD重叠部分的面积为S.(1)求AC的长;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.25.(11分)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在△ABC中,D是AB上一点,∠ADC=∠ACB.求证∠ACD=∠ABC.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E,使CE=BD,BE与CD的延长线相交于点F,点G,H分别在BF、BC上,BG=CD,∠BGH=∠BCF.在图中找出与BH相等的线段,并证明.”问题解决:(3)数学活动小组同学对上述问题进行特殊化研究之后发现,当∠BAC=90°时,若给出△ABC中任意两边长,则图3中所有已经用字母标记的线段长均可求.该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若∠BAC=90°,AB=4,AC=2,求BH的长.”26.(12分)在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A,B(点A在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E(m,0)在线段OB上(点E不与点B重合),点F在y轴负半轴上,OE=OF,连接AF,BF,EF,设△ACF的面积为S1,△BEF的面积为S2,S=S1+S2,当S取最大值时,求m的值;(3)如图2,抛物线的顶点为D,连接CD,BC,点P在第一象限的抛物线上,PD与BC相交于点Q,是否存在点P,使∠PQC=∠ACD,若存在,请求出点P的坐标;若不存在,请说明理由.

2022年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C. D.﹣【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列立体图形中,主视图是圆的是()A. B. C. D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:A.圆锥的主视图是等腰三角形,因此选项A不符合题意;B.三棱柱的主视图是矩形,因此选项B不符合题意;C.圆柱的主视图是矩形,因此选项C不符合题意;D.球的主视图是圆,因此选项D符合题意;故选:D.【点评】本题考查简单几何体的三视图,理解视图的定义,掌握各种几何体的三视图的形状是正确判断的前提.3.(3分)下列计算正确的是()A.=2 B.=﹣3 C.2+3=5 D.(+1)2=3【分析】根据二次根式的加法,算术平方根,立方根,完全平方公式,进行计算逐一判断即可解答.【解答】解:A、=﹣2,故A不符合题意;B、=3,故B不符合题意;C、2+3=5,故C符合题意;D、(+1)2=3+2,故D不符合题意;故选:C.【点评】本题考查了二次根式的混合运算,二次根式的加法,算术平方根,立方根,准确熟练地进行计算是解题的关键.4.(3分)如图,平行线AB,CD被直线EF所截,FG平分∠EFD,若∠EFD=70°,则∠EGF的度数是()A.35° B.55° C.70° D.110°【分析】先根据角平分线的定义求出∠GFD的度数,再由平行线的性质即可得出结论.【解答】解:∵FG平分∠EFD,∠EFD=70°,∴∠GFD=∠EFD=×70°=35°,∵AB∥CD,∴∠EGF=∠GFD=35°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等.5.(3分)六边形内角和的度数是()A.180° B.360° C.540° D.720°【分析】根据多边形的内角和公式可得答案.【解答】解:六边形的内角和的度数是(6﹣2)×180°=720°.故选:D.【点评】本题考查多边形的内角和,熟练掌握多边形的内角和公式是解题关键.6.(3分)不等式4x<3x+2的解集是()A.x>﹣2 B.x<﹣2 C.x>2 D.x<2【分析】根据不等式的计算方法计算即可.【解答】解:4x<3x+2,移项,得x<2.故选:D.【点评】本题考查了一元一次不等式,熟练掌握一元一次不等式的解法,细心计算即可.7.(3分)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表所示.则所销售的女鞋尺码的众数是()尺码/cm22.52323.52424.5销售量/双14681A.23.5 B.23.6 C.24 D.24.5【分析】根据众数的意义解答即可.一组数据中出现次数最多的数据叫做众数.【解答】解:∵众数是在一组数据中出现次数最多的数,24cm出现的次数最多,∴众数是24cm.故选:C.【点评】本题考查众数,熟练掌握众数的求法是解题关键.8.(3分)若关于x的一元二次方程x2+6x+c=0有两个相等的实数根,则c的值是()A.36 B.9 C.6 D.﹣9【分析】根据根的判别式的意义得到Δ=62﹣4c=0,然后解一次方程即可.【解答】解:∵关于x的一元二次方程x2+6x+c=0有两个相等的实数根,∴Δ=62﹣4c=0,解得c=9,故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.9.(3分)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6 B.3 C.1.5 D.1【分析】根据题意可知:MN是线段AC的垂直平分线,然后根据三角形相似可以得到点D为AB的中点,再根据直角三角形斜边上的中线和斜边的关系,即可得到CD的长.【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.【点评】本题考查直角三角形斜边上的中线、线段垂直平分线的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是()A.y=0.1x B.y=﹣0.1x+30 C.y= D.y=﹣0.1x2+30x【分析】直接利用油箱中的油量y=总油量﹣耗油量,进而得出函数关系式,即可得出答案.【解答】解:由题意可得:y=30﹣0.1x,(0≤x≤300).故选:B.【点评】此题主要考查了根据实际问题列一次函数关系式,正确得出函数关系式是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)方程=1的解是x=5.【分析】按照解分式方程的步骤,进行计算即可解答.【解答】解:=1,2=x﹣3,解得:x=5,检验:当x=5时,x﹣3≠0,∴x=5是原方程的根,故答案为:x=5.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.12.(3分)不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是.【分析】一共有5个球,2黑3白,黑球占总数的,因此可求出随机摸出1个球,“摸出黑球”的概率.【解答】解:袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是=,故答案为:.【点评】本题考查概率公式,理解概率的定义是正确解答的关键.13.(3分)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是(5,2).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减求解即可.【解答】解:将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是(1+4,2),即(5,2),故答案为:(5,2).【点评】本题主要考查坐标与图形变化—平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.14.(3分)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是π(结果保留π).【分析】先根据正方形的性质得到∠CAD=45°,AC=AB=×=2,然后利用弧长公式计算的长度.【解答】解:∵四边形ABCD为正方形,∴∠CAD=45°,AC=AB=×=2,∵对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,∴的长度为=π.故答案为:π.【点评】本题考查了弧长的计算:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了正方形的性质.15.(3分)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为100x﹣90x=100.【分析】先根据每人出90钱,恰好合适,用x表示出猪价,再根据“每人出100钱,则会多出100钱”,即可得出关于x的一元一次方程,即可得出结论.【解答】解:∵每人出90钱,恰好合适,∴猪价为90x钱,根据题意,可列方程为100x﹣90x=100.故答案为:100x﹣90x=100.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.(3分)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A的对应点A'落在EF上,并使折痕经过点B,得到折痕BM,连接MF,若MF⊥BM,AB=6cm,则AD的长是5cm.【分析】由矩形性质和折叠性质可得BE=3,A′B=AB=6cm,∠A=∠A′EB=90°,∠ABM=∠A′BM,可得∠BA′E=30°,从而可得∠A′BE=60°,可得∠ABM=30°,从而可得AM=2cm,∠DMF=30°,DF=3cm,即可求解DM,进而求出AD的长.【解答】解:∵四边形ABCD为矩形,AB=6cm,∴∠A=90°,由折叠性质可得:BE=DF=3cm,A′B=AB=6cm,∠A′EB=90°,∠ABM=∠A′BM,在Rt△A′BE中,A′B=2BE,∴∠BA′E=30°,∴∠A′BE=60°,∴∠ABM=30°,∠AMB=60°,∴AM=tan30°•AB==2cm,∵MF⊥BM,∴∠BMF=90°,∴∠DMF=30°,∴∠DFM=60°,在Rt△DMF中,MD=tan60°•DF=cm,∴AD=AM+DM=2cm.故答案为:5.【点评】本题考查折叠性质,长方形的性质,30°角的直角三角形等知识点,解题的关键是利用边之间的关系推出∠BA′E=30°.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.(9分)计算:÷﹣.【分析】先算除法,后算减法,即可解答.【解答】解:÷﹣=•﹣=﹣=.【点评】本题考查了分式的混合运算,熟练掌握因式分解是解题的关键.18.(10分)为了解某初级中学落实《中共中央国务院关于全面加强新时代大中小学劳动教育的意见》的实施情况,调查组从该校全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),并对数据进行整理、描述和分析.以下是根据调查结果绘制的统计图表的一部分.平均每周劳动时间频数统计表平均每周劳动时间t/h频数频率1≤t<232≤t<3a0.123≤t<437b4≤t<50.355≤t<6合计c根据以上信息,回答下列问题:(1)填空:a=12,b=0.37,c=100;(2)若该校有1000名学生,请估计平均每周劳动时间在3≤t<5范围内的学生人数.【分析】(1)由统计图可知,a=12,根据频率=可求出调查人数,进而求出相应的频数或频率,确定a、b、c的值;(2)求出平均每周劳动时间在3≤t<5范围内的学生所占的百分比,即可求出相应的人数.【解答】解:(1)由频数分布直方图可知,a=12,调查人数为:12÷0.12=100(人),即c=100,b=37÷100=0.37,故答案为:12,0.37,100;(2)平均每周劳动时间在3≤t<5范围内的学生所占的百分比为0.37+0.35=0.72,1000×(0.37+0.35)=720(名),答:该校1000名学生中平均每周劳动时间在3≤t<5范围内的大约有720名.【点评】本题考查频数分布直方图、频数分布表,掌握频率=是正确解答的前提.19.(10分)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.【分析】连接AC,由菱形的性质得∠EAC=∠FAC,再由SAS证△ACE≌△ACF,即可得出结论.【解答】证明:如图,连接AC,∵四边形ABCD是菱形,∴∠EAC=∠FAC,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS)∴CE=CF.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.熟练掌握菱形的性质,证得△ACE≌△ACF是解题的关键.20.(10分)2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?【分析】设冰墩墩毛绒玩具的单价为x元,雪容融毛绒玩具的单价为y元,由总价=单价×数量,结合“购买1个冰墩墩和2个雪容融毛绒玩具需400元;购买3个冰墩墩和4个雪容融毛绒玩具需1000元”,即可列出关于x,y的二元一次方程组,解二元一次方程组即可得出结果.【解答】解:设冰墩墩毛绒玩具的单价为x元,雪容融毛绒玩具的单价为y元,依题意得:,解得:,答:冰墩墩毛绒玩具的单价为200元,雪容融毛绒玩具的单价为100元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当V=5m3时,ρ=1.98kg/m3.(1)求密度ρ关于体积V的函数解析式;(2)若3≤V≤9,求二氧化碳密度ρ的变化范围.【分析】(1)设密度ρ关于体积V的函数解析式为ρ=(k≠0),利用反比例函数图象上点的坐标特征,即可求出k值,进而可得出密度ρ关于体积V的函数解析式;(2)由k=9.9>0,利用反比例函数的性质可得出当V>0时ρ随V的增大而减小,结合V的取值范围,即可求出二氧化碳密度ρ的变化范围.【解答】解:(1)设密度ρ关于体积V的函数解析式为ρ=(k≠0).∵当V=5m3时,ρ=1.98kg/m3,∴1.98=,∴k=9.9,∴密度ρ关于体积V的函数解析式为ρ=(V>0).(2)∵k=9.9>0,∴当V>0时,ρ随V的增大而减小,∴当3≤V≤9时,≤ρ≤,即二氧化碳密度ρ的变化范围为1.1≤ρ≤3.3.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出k值;(2)利用反比例函数的性质及反比例函数图象上点的坐标特征,找出ρ的变化范围.22.(10分)如图,莲花山是大连著名的景点之一.游客可以从山底乘坐索道车到达山顶,索道车运行的速度是1米/秒.小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角约为30°,测得白塔顶部C的仰角约为37°,索道车从A处运行到B处所用时间约为5分钟.(1)索道车从A处运行到B处的距离约为300米;(2)请你利用小明测量的数据,求白塔BC的高度.(结果取整数)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】(1)根据路程=速度×时间,进行计算即可解答;(2)在Rt△ABD中,利用锐角三角函数的定义求出AD,BD的长,再在Rt△ACD中,利用锐角三角函数的定义求出CD的长,进行计算即可解答.【解答】解:(1)由题意得:5分钟=300秒,∴1×300=300(米),∴索道车从A处运行到B处的距离约为300米,故答案为:300;(2)在Rt△ABD中,∠BAD=30°,∴BD=AB=150(米),AD=BD=150(米),在Rt△ACD中,∠CAD=37°,∴CD=AD•tan37°≈150×0.75≈194.6(米),∴BC=CD﹣BD=194.6﹣150≈45(米),∴白塔BC的高度约为45米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(10分)AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,过点A作⊙O的切线,与DO的延长线相交于点E.(1)如图1,求证∠B=∠E;(2)如图2,连接AD,若⊙O的半径为2,OE=3,求AD的长.【分析】(1)利用等角的余角相等证明即可;(2)利用勾股定理求出AE,再利用相似三角形的性质求BD,根据垂径定理和勾股定理即可求出AD.【解答】(1)证明:∵AE与⊙O相切于点A∴AB⊥AE,∴∠A=90°,∵OD⊥BC,∴∠BDO=∠A=90°,∵∠BOD=∠AOE,∴∠B=∠E.(2)如图2,连接AC,∵OA=2,OE=3,∴根据勾股定理得AE=,∵∠B=∠E,∠BOD=∠EOA,∴△BOD∽△EOA,∴=,∴=,∴BD=,∴CD=BD=,∵AB是⊙O的直径,∴∠C=90°,在Rt△ABC中,根据勾股定理得AC=,在Rt△ACD中,根据勾股定理得AD===.【点评】本题考查相似三角形,垂径定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,在△ABC中,∠ACB=90°,BC=4,点D在AC上,CD=3,连接DB,AD=DB,点P是边AC上一动点(点P不与点A,D,C重合),过点P作AC的垂线,与AB相交于点Q,连接DQ,设AP=x,△PDQ与△ABD重叠部分的面积为S.(1)求AC的长;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.【分析】(1)根据勾股定理可求出BD,根据AD=BD进而求出AC,(2)分两种情况进行解答,即点P在点D的左侧或右侧,分别画出相应的图形,根据相似三角形的判定和性质分别用含有x的代数式表示PD、PE、PQ,由三角形面积之间的关系可得答案.【解答】解:(1)在Rt△BCD中,BC=4,CD=3,∴BD==5,又∵AD=BD,∴AC=AD+CD=5+3=8;(2)当点P在点D的左侧时,即0<x<5,如图1,此时重叠部分的面积就是△PQD的面积,∵PQ⊥AC,BC⊥AC,∴PQ∥BC,∴△ABC∽△AQP,∴===2,设AP=x,则PQ=x,PD=AD﹣AP=5﹣x,∴S重叠部分=S△PQD=(5﹣x)×x=﹣x2+x;当点P在点D的右侧时,即5<x<8,如图2,由(1)得,AP=x,PQ=x,则PD=x﹣5,∵PQ∥BC,∴△DPE∽△DCB,∴==,∴PE=(x﹣5),∴QE=PQ﹣PE=x﹣(x﹣5)=﹣x+,∴S重叠部分=S△DEQ=(x﹣5)×(﹣x+)=﹣x2+x﹣;答:S关于x的函数解析式为:当0<x<5时,S=﹣x2+x;当5<x<8时,S=﹣x2+x﹣.【点评】本题考查勾股定理,函数关系式以及相似三角形的判定和性质,掌握相似三角形的判定和性质,求出相关三角形的边长是解决问题的关键.25.(11分)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在△ABC中,D是AB上一点,∠ADC=∠ACB.求证∠ACD=∠ABC.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E,使CE=BD,BE与CD的延长线相交于点F,点G,H分别在BF、BC上,BG=CD,∠BGH=∠BCF.在图中找出与BH相等的线段,并证明.”问题解决:(3)数学活动小组同学对上述问题进行特殊化研究之后发现,当∠BAC=90°时,若给出△ABC中任意两边长,则图3中所有已经用字母标记的线段长均可求.该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若∠BAC=90°,AB=4,AC=2,求BH的长.”【分析】(1)利用三角形的外角的性质证明即可;(2)结论:BH=EF.如图2中,在CB上取一点T,使得GH=CT.证明△BGH≌△DCT(SAS),推出BH=DT,∠GBH=∠CDT,再证明△CEF≌△BDT(AAS),推出EF=DT,可得结论;(3)如图3,过点E作EM∥AD交CE的延长线于点M.利用平行线分线段成比例定理解决问题即可.【解答】(1)证明:如图1中,∵∠ADC=∠ACB,∴∠B+∠DCB=∠DCB+∠ACD,∴∠ACD=∠B;(2)解:结论:BH=EF.理由:如图2中,在CB上取一点T,使得GH=CT.在△BGH和△DCT中,,∴△BGH≌△DCT(SAS),∴BH=DT,∠GBH=∠CDT,∵∠CDT+∠FDT=180°,∴∠GBH+∠FDT=180°,∴∠BFD+∠BTD=180°,∵∠CFE+∠BFD=180°,∴∠CFE=∠BTD,在△CEF和△BDT中,,∴△CEF≌△BDT(AAS),∴EF=DT,∴EF=BH;(3)解:如图3,过点E作EM∥AD交CE的延长线于点M.∵AD∥EM,∴=,∴=.∴EM=,∵==,∵tan∠ACD=tan∠ABC=,∴=,∵AC=2,AB=4,∴AD=1,BD=CE=3,∴AE=1,∴BE====,∴EF=BE=.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形或直角三角形解决问题,属于中考压轴题.26.(12分)在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A,B(点A在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E(m,0)在线段OB上(点E不与点B重合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论