![2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题含解析_第1页](http://file4.renrendoc.com/view3/M03/1D/0F/wKhkFmYkU0iAM8_XAAIL9rV2Pr8564.jpg)
![2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题含解析_第2页](http://file4.renrendoc.com/view3/M03/1D/0F/wKhkFmYkU0iAM8_XAAIL9rV2Pr85642.jpg)
![2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题含解析_第3页](http://file4.renrendoc.com/view3/M03/1D/0F/wKhkFmYkU0iAM8_XAAIL9rV2Pr85643.jpg)
![2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题含解析_第4页](http://file4.renrendoc.com/view3/M03/1D/0F/wKhkFmYkU0iAM8_XAAIL9rV2Pr85644.jpg)
![2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题含解析_第5页](http://file4.renrendoc.com/view3/M03/1D/0F/wKhkFmYkU0iAM8_XAAIL9rV2Pr85645.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省成都市成华区市级名校中考适应性考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是菱形2.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)3.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°4.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所得的以下推断不正确的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142min的选手,会比一半以上的选手成绩要好5.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1396.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④7.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cm B.C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形8.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.9.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.510.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,) B.(,0) C.(0,2) D.(2,0)二、填空题(共7小题,每小题3分,满分21分)11.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.12.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.14.如果2,那么=_____(用向量,表示向量).15.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.16.若一个多边形的内角和是900º,则这个多边形是边形.17.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.三、解答题(共7小题,满分69分)18.(10分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:(1)当为t何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.19.(5分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.20.(8分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.21.(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.(10分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。23.(12分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.24.(14分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.【详解】解:A、若AB⊥BC,则是矩形,正确;B、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B.【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.2、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.3、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.4、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.5、B【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.6、B【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.7、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,,∴EF=1.∴.(3)结论C正确,理由如下:如图,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴.(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC.此时AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故选D.8、B【解析】
连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.9、B【解析】
原式利用减法法则变形,计算即可求出值.【详解】,故选:B.【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.10、A【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【详解】如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或−(负数舍去),故C点的坐标为(0,).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.二、填空题(共7小题,每小题3分,满分21分)11、①②③【解析】
由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.故正确的序号是:①②③.【点睛】本题考查了一次函数的应用.12、2+4【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为:2+4.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.13、【解析】
仿照已知方法求出所求即可.【详解】令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案为:.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案为.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.15、1.【解析】
先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.【详解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.16、七【解析】
根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.17、48°【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【详解】如图,在⊙O上取一点K,连接AK、KC、OA、OC.∵四边形AKCB内接于圆,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分别切⊙O于A、C两点,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案为48°.【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.三、解答题(共7小题,满分69分)18、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形【解析】
(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,则AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴当t=时,PQ∥BC.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴当t=时,y有最大值为.(3)存在.理由:连接PP′,交AC于点O.∵四边形PQP′C为菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴当t=时,四边形PQP′C为菱形.【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.19、见解析.【解析】
(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.详解:证明:在▱ABCD中,,,又
,≌,,,又,四边形AGCH为平行四边形,.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.21、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1).(2)用表格列出所有可能的结果:第二次
第一次
红球1
红球2
白球
黑球
红球1
(红球1,红球2)
(红球1,白球)
(红球1,黑球)
红球2
(红球2,红球1)
(红球2,白球)
(红球2,黑球)
白球
(白球,红球1)
(白球,红球2)
(白球,黑球)
黑球
(黑球,红球1)
(黑球,红球2)
(黑球,白球)
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)==.考点:概率统计22、见解析【解析】
在ABC和EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE证得ABC≌EAD,继而证得AC=DE.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【点睛】本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.23、(1)证明:∵ABCD是平行四边形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】证明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF24、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人商业贷款抵押合同(1997年)版
- 个人债务履行担保合同示例
- 个人定向捐赠合同模板修订版
- 与道具研发企业之间的订制合同范本
- 家装样板房装修合同范本
- 个人股权转让合同协议书
- 餐厅保洁服务合同
- 个人承包餐饮店的合同范本
- 临时仓储设施租赁合同范本
- 二手房交易补充合同
- 13J103-7《人造板材幕墙》
- 上海高考英语词汇手册列表
- PDCA提高患者自备口服药物正确坚持服用落实率
- 上海石油化工股份有限公司6181乙二醇装置爆炸事故调查报告
- 家谱人物简介(优选12篇)
- 品管部岗位职责20篇
- 2023年中智集团下属中智股份公司招聘笔试题库及答案解析
- GA 1409-2017警用服饰硬式肩章
- 小儿垂钓 (课件)(14张)
- 嘉吉乐恩贝1-FarLactation课件
- 激光拉曼光谱技术课件
评论
0/150
提交评论