广东省佛山市六峰中学2024年中考四模数学试题含解析_第1页
广东省佛山市六峰中学2024年中考四模数学试题含解析_第2页
广东省佛山市六峰中学2024年中考四模数学试题含解析_第3页
广东省佛山市六峰中学2024年中考四模数学试题含解析_第4页
广东省佛山市六峰中学2024年中考四模数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市六峰中学2024年中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.2.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.3.方程x2﹣kx+1=0有两个相等的实数根,则k的值是()A.2 B.﹣2 C.±2 D.04.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=()A.6 B. C.12﹣π D.12﹣π5.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.46.﹣3的相反数是()A. B. C. D.7.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°8.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.9.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=32其中正确的结论个数为()A.4 B.3 C.2 D.110.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.12.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,yB)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则yB的取值范围是_________.13.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.15.如图,直线a∥b,直线c分别于a,b相交,∠1=50°,∠2=130°,则∠3的度数为()A.50° B.80° C.100° D.130°16.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.17.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,则线段BC的长是_____.三、解答题(共7小题,满分69分)18.(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?19.(5分)解方程式:-3=20.(8分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.21.(10分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.22.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)23.(12分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(14分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.2、C【解析】

正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.3、C【解析】

根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.4、D【解析】

根据题意可得到CE=2,然后根据S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:∵BC=4,E为BC的中点,∴CE=2,∴S1﹣S2=3×4﹣,故选D.【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.5、C【解析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:121∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.6、D【解析】

相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.7、D【解析】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.8、A【解析】

根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.9、B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.10、A【解析】

首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.12、ya≥1【解析】

设点A的坐标为(m,n),由题意可知n=m1,从而可知抛物线C为y=(x-m)1+n,化简为y=x1-1mx+1m1,将x=1代入y=x1-1mx+1m1,利用二次函数的性质即可求出答案.【详解】设点A的坐标为(m,n),m为全体实数,

由于点A在抛物线y=x1上,

∴n=m1,

由于以A为顶点的抛物线C为y=x1+bx+c,

∴抛物线C为y=(x-m)1+n

化简为:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案为ya≥1【点睛】本题考查了二次函数的性质,解题的关键是根据题意求出ya=4-4m+1m1=1(m-1)1+1.13、60°.【解析】

先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.14、【解析】

根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】抛物线的对称轴为x=-.∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,∴点C的横坐标为-1.∵四边形ABCD为菱形,∴AB=BC=AD=1,∴点D的坐标为(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD•OB=1×4=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.15、B【解析】

根据平行线的性质即可解决问题【详解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故选B.【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.16、【解析】

试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率17、6【解析】

作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=DEAE=33【详解】如图:作DE⊥AB,交BA的延长线于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴设AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.三、解答题(共7小题,满分69分)18、(1)y=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.【解析】分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.19、x=3【解析】

先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.20、(1)△ABC为直角三角形,证明见解析;(2)12π;(3).【解析】

(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得,即可求出tan∠C=再求出cos∠C即可.【详解】解:∵,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°∴x=30°∴∠ABE=60°∴AB=BE=∴(3)由(1)知:∠D=∠CFE=∠CBE,∴tan∠CBE=,设EF=a,BE=2a,∴BF=,BD=2BF=,∴AD=AB=,∴,DE=2BE=4a,过F作FK∥BD交CE于K,∴,∵,∴∴,∴tan∠C=∴cos∠C=.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.21、(1)证明见解析;(2)CD=3【解析】分析:(1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD=AB=3点睛:本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1)∠FHE=60°;(2)篮板顶端F到地面的距离是4.4米.【解析】

(1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1)由题意可得:cos∠FHE=,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F到地面的距离是4.4米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.23、(1)证明见解析;(2)OC=15【解析】试题分析:(1)首选连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论