云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷含解析_第1页
云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷含解析_第2页
云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷含解析_第3页
云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷含解析_第4页
云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山壮族苗族自治州达标名校2024届初中数学毕业考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是()A.①②都对 B.①②都错 C.①对②错 D.①错②对2.若是关于x的方程的一个根,则方程的另一个根是()A.9 B.4 C.4 D.33.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A. B.C. D.5.一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.727.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(

).A.众数 B.中位数 C.平均数 D.方差8.下列各数中,为无理数的是()A. B. C. D.9.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B.C. D.10.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形11.下面的几何体中,主视图为圆的是()A. B. C. D.12.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.1B.-6C.2或-6D.不同于以上答案二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.14.计算:=_____________.15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.16.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.17.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.18.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?20.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.21.(6分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.22.(8分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.23.(8分)先化简,后求值:(1﹣)÷(),其中a=1.24.(10分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.25.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)26.(12分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)27.(12分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.【详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如图,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴当x=时,﹣,解得a1=3,a2=(舍去),∴y=﹣,当y=时,=﹣,解得x1=,x2=,当E在AB上时,y=时,x=3﹣=,故①②正确,故选A.【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.2、D【解析】

解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,解得a=,故选D.3、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.4、B【解析】

根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像6、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数8、D【解析】A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,故选D.9、D【解析】

此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.10、B【解析】

如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.11、C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12、C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.【详解】解:列表得:

两个骰子向上的一面的点数和小于6的有10种,

则其和小于6的概率是,

故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.14、【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:原式=.故答案为:.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.15、k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.16、或【解析】

设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.

∵直线y=2x-1与x轴交点为C,与y轴交点为A,

∴点A(0,-1),点C(,0),

∴OA=1,OC=,AC==,

∴cos∠ACO==.

∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,

∴∠BAD=∠ACO.

∵AD=3,cos∠BAD==,

∴AB=3.

∵直线y=2x-b与y轴的交点为B(0,-b),

∴AB=|-b-(-1)|=3,

解得:b=1-3或b=1+3.

故答案为1+3或1-3.【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.17、﹣1<a<1【解析】

解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a-1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a-1>a+1,解得:无解;②当点(a-1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案为:-1<a<1.【点睛】本题考查反比例函数的性质.18、6.【解析】

作辅助线,根据反比例函数关系式得:S△AOD=,S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵点A为函数y=(x>0)的图象上一点,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案为6.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】

(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x套运动服,由题意得解这个方程,得经检验,是所列方程的根.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得,解这个不等式,得答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.20、(1)

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,,∴<,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.21、(1)2-;(2)【解析】试题分析:点表示向右直爬2个单位到达点,点表示的数为把的值代入,对式子进行化简即可.试题解析:由题意点和点的距离为,其点的坐标为因此点坐标把的值代入得:22、证明见解析.【解析】

由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.【详解】证明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中线,∴BD=CD,∴在△BED与△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.23、,2.【解析】

先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【详解】解:原式=,当a=1时,原式==2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.24、(1)证明见解析;(2)CE∥AD,理由见解析;(3).【解析】

(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可.【详解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,理由:∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,又∵E为AB的中点,∴∠EAC=∠ECA,∵∠DAC=∠CAE,∴∠DAC=∠ECA,∴CE∥AD;(3)∵AD=4,AB=6,CE=AB=AE=3,∵CE∥AD,∴∠FCE=∠DAC,∠CEF=∠ADF,∴△CEF∽△ADF,∴==,∴=.25、3.05米.【解析】

延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论