




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解直角三角形1.了解并掌握解直角三角形的概念;2.理解直角三角形中的五个元素之间的联系.(重点)3.学会解直角三角形.(难点)(1)三边之间的关系:a2+b2=_____;(2)锐角之间的关系:∠A+∠B=_____;(3)边角之间的关系:sinA=_____,cosA=_____,tanA=_____.如图,在Rt△ABC中,共有六个元素(三条边,三个角),其中∠C=90°.c290°比萨斜塔倾斜程度的问题:
1972年的情形:设塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,因此利用计算器可得∠A≈5°28′
类似地,可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.(纠偏后使塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm)利用计算器可得∠A≈5°51″比萨斜塔倾斜程度的问题:
1972年的情形:设塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,因此利用计算器可得∠A≈5°28′
如果将上述实际问题抽象为数学问题,就是已知直角三角形的斜边和一条直角边,求它的锐角的度数.
一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.
(1)在直角三角形中,除直角外的五个元素之间有哪些关系?(2)知道五个元素中的几个,就可以求其余元素?(1)三边之间的关系
(2)两锐角之间的关系
(3)边角之间的关系∠A+∠B=90°a2+b2=c2(勾股定理)(3)中的A都可以换成B,同时把a,b互换.利用这些关系,知道其中的两个元素(至少有一个是边),就可以求出其余三个未知元素.
在Rt△ABC中,∠C=90°,a=30,b=20,根据条件解直角三角形.解:根据勾股定理例2.如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:在Rt△ABC中,∠C=90°,∠B=72°,c=14.根据条件解直角三角形.解:
D
如图,△ABC中,AB=12,BC=15,∠ABC=60°.求tanC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手工家具订购合同9篇
- 主题教育活动讲党课
- 办公场所卫生监督体系构建
- 2025襄阳职业技术学院辅导员考试试题及答案
- 2025西安科技大学辅导员考试试题及答案
- 2025辽宁警察学院辅导员考试试题及答案
- T/ZHCA 008-2019眼霜类化妆品眼刺激性试验体外测试方法鸡胚绒毛膜尿囊膜血管试验
- 统计问卷调查设计
- 小班安全活动:老虎嘴安全教育
- T/ZBH 001-2017建筑玻璃外观质量要求及评定
- 工贸企业有限空间作业场所安全管理台账
- 国际财务管理教学ppt课件(完整版)
- DB33∕T 715-2018 公路泡沫沥青冷再生路面设计与施工技术规范
- 彩色简约鱼骨图PPT图表模板
- 光引发剂的性能与应用
- PID控制经典PPT
- 图像处理和分析(上册)课后习题答案(章毓晋)
- 油田注入水细菌分析方法+绝迹稀释法
- 医师处方权申请
- 简易充电器课程设计
- 部编版语文三年级下册课外阅读
评论
0/150
提交评论