




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型十一方程、函数与不等式(组)的实际应用类型一方程(组)与不等式(组)的实际应用考向一:方程(组)的实际应用【例1】(2019·永州)在一段长为1000米的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.【对应训练】1.(2019·百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?2.(2020·黄石)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值19两银子;2头牛,5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.3.(2020·扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x,y满足3x-y=5①,2x+3y=7②,求x-4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x,y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.-1
5-11
考向二:方程(组)与不等式(组)的综合应用【例2】(2019·滨州)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【对应训练】4.(2020·娄底)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶.求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?5.(2020·菏泽)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元,若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.6.(2020·济宁)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元;当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元;当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元.∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.类型二一次函数的实际应用【例3】(2020·包头)某商店销售A,B两种商品,A种商品的销售单价比B种商品的销售单价少40元,2件A种商品和3件B种商品的销售总额为820元.(1)求A种商品和B种商品的销售单价分别为多少元?(2)该商店计划购进A,B两种商品共60件,且A,B两种商品的进价总额不超过7800元.已知A种商品和B种商品的每件进价分别为110元和140元,应如何进货才能使这两种商品全部售出后总获利最多?(2)设购进A种商品a件,则购进B种商品(60-a)件,设总获利为w元,根据题意得110a+140(60-a)≤7800,解得a≥20,w=(140-110)a+(180-140)(60-a)=-10a+2400,∵-10<0,∴w随a的增大而减小,∴当a=20时,w有最大值.答:商店购进A种商品20件,购进B种商品40件时,总获利最多.【对应训练】7.(2020·深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得50(x+6)+30x=620,解得x=4,∴x+6=10.答:蜜枣粽的进货单价是4元,肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300-y)个,获得利润为w元,由题意得w=(14-10)y+(6-4)(300-y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300-y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000.答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.8.(2020·牡丹江)某商场准备购进A,B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.(2)由题意,得y=(2500-2000)x+(1800-1500)(20-x)=200x+6000,∵2000x+1500(20-x)≤36000,∴x≤12.又∵x≥10,且x是整数,∴x=10或11或12,∴有三种购买方案;(3)∵y=200x+6000是一次函数,y随x的增大而增大,∴当x=12时,y最大=12×200+6000=8400元,设再次购买A型电脑b台,B型电脑c台,∴2000b+1500c≤8400,且b,c为非负整数,∴b=0,c=5或b=1,c=4或b=2,c=2或b=3,c=1或b=4,c=0,∴捐赠A,B型号电脑总数最多是5台.9.(2020·襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克,如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.(2)设购进甲种水果为a千克,则购进乙种水果(100-a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100-a)=5a+2500,当a=40时,wmin=2700元;当50<a≤60时,w2=24a+300+25(100-a)=-a+2800,当a=60时,wmin=2740元.∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700元.此时100-a=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少;【对应训练】10.(2020·宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?销售单价x(元/千克)55606570销售量y(千克)70605040(2)由题意得(x-50)(-2x+180)=600,整理得x2-140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w元,则w=(x-50)(-2x+180)=-2(x-70)2+800,∵-2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.11.(2020·十堰)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为_____________,x的取值范围为__________;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.y=2x+201
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防火队员考核方案范本
- 云南德宏小木屋施工方案
- 银行从业资格证话题探讨试题及答案
- 深入分析2025年国际金融理财师考试中投资决策的要点试题及答案
- 2025年新思路的证券从业资格考试试题及答案
- 微生物检验技师证书考试全景分析试题及答案
- 参与讨论2025年特许金融分析师考试试题及答案
- 2024项目管理案例分析试题及答案
- 微生物检测在新兴传染病中的应用试题及答案
- 上堤路栏杆施工方案
- 公司安环部绩效考核实施管理方法
- 建筑施工现场安全培训课件
- 建筑施工升降机安装使用拆卸安全技术规程
- 资产评估常用数据与参数手册
- 2023年某路桥工程有限公司生产安全事故综合应急预案
- 静压桩机安装拆卸方案
- 电脑故障维修
- 2023山东春季高考数学真题(含答案)
- 2022年初中历史课程标准电子版
- 平面四杆机构的急回特性
- 考研经验分享课件
评论
0/150
提交评论