




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年七年级数学下册举一反三系列专题9.2乘法公式【九大题型】【苏科版】TOC\o"1-3"\h\u【题型1乘法公式的基本运算】 1【题型2利用完全平方式确定系数】 2【题型3乘法公式的运算】 2【题型4利用乘法公式求值】 3【题型5利用面积法验证乘法公式】 3【题型6乘法公式的应用】 4【题型7平方差公式、完全平方公式的几何背景】 5【题型8整式乘法中的新定义问题】 8【题型9整式乘法中的规律探究】 9【知识点1乘法公式】平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。【题型1乘法公式的基本运算】【例1】(2022春•青川县期末)下列各式中计算正确的是()A.(a+2b)(a﹣2b)=a2﹣2b2 B.(﹣a+2b)(a﹣2b)=a2﹣4b2 C.(﹣a﹣2b)(a﹣2b)=﹣a2+4b2 D.(﹣a﹣2b)(a+2b)=a2﹣4b2【变式1-1】(2022春•六盘水期中)下列各式中能用平方差公式计算的是()A.(﹣x+2y)(x﹣2y) B.(3x﹣5y)(﹣3x﹣5y) C.(1﹣5m)(5m﹣1) D.(a+b)(b+a)【变式1-2】(2022春•巴中期末)下列运算正确的是()A.(x+y)(y﹣x)=x2﹣y2 B.(﹣x+y)2=﹣x2+2xy+y2 C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2 D.(x+y)(﹣y+x)=x2﹣y2【变式1-3】(2022秋•天心区校级期中)下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a) B.(﹣n2﹣m2)(m2+n2) C.(−12p+q)(q+12p) D.(2x﹣3【题型2利用完全平方式确定系数】【例2】(2022秋•望城区期末)若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A.1个 B.2个 C.3个 D.5个【变式2-1】(2022•南通模拟)如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.﹣1 C.4 D.﹣4【变式2-2】(2022秋•青县期末)若9x2﹣(K﹣1)x+1是关于x的完全平方式,则常数K的值为()A.0 B.﹣5或7 C.7 D.9【变式2-3】(2022秋•崇川区校级月考)(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成()A.a<b<c B.(a﹣b)2+(b﹣c)2=0 C.c<a<b D.a=b≠c【题型3乘法公式的运算】【例3】(2022春•龙胜县期中)计算:(1−152)×(1−162)×(1A.101200 B.101125 C.101100【变式3-1】(2022秋•碾子山区期末)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2.【变式3-2】(2022春•乳山市期末)用乘法公式进行计算:(1)20192﹣2018×2020;(2)112+13×66+392.【变式3-3】(2022春•顺德区校级月考)计算:(2+1)(22+1)(24+1)…(264+1)【题型4利用乘法公式求值】【例4】(2022秋•九龙坡区校级期中)若a2﹣b2=16,(a+b)2=8,则ab的值为()A.−32 B.32 【变式4-1】(2022春•姜堰区校级月考)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.【变式4-2】(2022春•双峰县期中)若x、y满足x2+y2=54,xy(1)(x+y)2(2)x4+y4.【变式4-3】(2022春•包河区期中)已知(2022﹣m)(2022﹣m)=2021,那么(2022﹣m)2+(2022﹣m)2的值为()A.4046 B.2023 C.4042 D.4043【题型5利用面积法验证乘法公式】【例5】(2022春•新泰市期末)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A.(a﹣b)(a+b)=a2﹣b2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.(2a﹣b)2=4a2﹣4ab+b2【变式5-1】(2022春•乐平市期末)如图所示,两次用不同的方法计算这个图的面积,可验证整式乘法公式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)(a+2b)=a2+3ab+2b2 C.(a+b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣2ab+b2【变式5-2】(2022春•锦州期末)如图1,在边长为a的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为()A.(a﹣3)2=a2﹣6a+9 B.(a+3)2=a2+6a+9 C.a(a+3)=a2+3a D.(a+3)(a﹣3)=a2﹣9【变式5-3】(2022•郫都区模拟)如图,在边长为(x+a)的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,由左右两个阴影部分面积,可以得到一个恒等式是()A.(x+a)2﹣a2=x(x+2a) B.x2+2ax=x(x+2a) C.(x+a)2﹣x2=a(a+2x) D.x2﹣a2=(x+a)(x﹣a)【题型6乘法公式的应用】【例6】(2022春•榆次区期中)如图1,从边长为(a+5)cm的大正方形纸片中剪去一个边长为(a+2)cm的小正方形,剩余部分(如图2)沿虚线剪开,按图3方式拼接成一个长方形(无缝隙不重合)则该长方形的面积为()A.9cm2 B.(6a﹣9)cm2 C.(6a+9)cm2 D.(6a+21)cm2【变式6-1】(2022秋•西峰区期末)如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).【变式6-2】(2022春•湖州期末)如图,把一块面积为100的大长方形木板被分割成2个大小一样的大正方形①,1个小正方形②和2个大小一样的长方形③后,如图摆放,且每个小长方形③的面积为16,则标号为②的正方形的面积是()A.16 B.14 C.12 D.10【变式6-3】(2022秋•香坊区校级期中)如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【题型7平方差公式、完全平方公式的几何背景】【例7】(2008秋•上海校级期中)我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(a﹣b)2=a2﹣2ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2=a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式;(3)除了拼成图四的图形外还能拼成其他的图形能验证公式成立,请试画出一个这样的图形,并标上相应的字母.【变式7-1】(2022春•西城区校级期中)阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式.(2)观察图4,请写出图4所表示的代数恒等式:.(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2=a2+2ab+b2,仿照图4画出你的拼图并标出相关数据.【变式7-2】(2022春•武侯区校级期中)[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的等量关系解决如下问题:若x+y=6,xy=112,求(x﹣y)(3)根据图③,写出一个代数恒等式:;(4)已知a+b=3,ab=1,利用上面的规律求a3【变式7-3】(2022春•贺兰县期中)在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):_______________________________________________________________________,证明上述速算方法的正确性.【题型8整式乘法中的新定义问题】【例8】(2022春•嘉兴期中)定义:对于三个不是同类项的单项式A,B,C,若A+B+C可以写成(a+b)2的形式,则称这三项为“完全搭配项”,若单项式x2,4和m是完全搭配项,则m可能是.(写出所有情况)【变式8-1】(2022春•成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.【变式8-2】(2022春•博山区期末)定义:如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为:“奇异数”.如8,16,24都是“奇异数”.(1)写出两个奇异数(8,16,24除外);(2)试问偶数6050是不是奇异数?为什么?【变式8-3】(2022•永川区模拟)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则称这个正整数为“非智慧数”.例如:22﹣12=3;32﹣22=5;32﹣12=8;42﹣32=7;42﹣22=12;42﹣12=15;…,等等.因此3,5,8,…,都是“智慧数”;而1,2,4,…,都是“非智慧数”.对于“智慧数”,有如下结论:①设k为正整数(k≥2),则k2﹣(k﹣1)2=2k﹣1.∴除1以外,所有的奇数都是“智慧数”;②设k为正整数(k≥3),则k2﹣(k﹣2)2=.∴都是“智慧数”.(1)补全结论②中的空缺部分;并求出所有大于5而小于20的“非智慧数”;(2)求出从1开始的正整数中从小到大排列的第103个“智慧数”.【题型9整式乘法中的规律探究】【例9】(2022春•江阴市期中)观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1 B.﹣22019﹣1 C.22019−13【变式9-1】(2022•丰顺县校级开学)解答下列问题.(1)观察下列各式并填空:32﹣12=8×1;52﹣32=8×2;①72﹣52=8×;②92﹣2=8×4;③﹣92=8×5;④132﹣2=8×6;…(2)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)你能运用平方差公式来说明(2)中你所写规律的正确性吗?【变式9-2】(2022秋•肥城市期中)我们知道,1+2+3+…+n=n(n+1)首先,我们知道:(n+1)2=n2+2n+1,变形一下,就是(n+1)2﹣n2=2n+1,依次给n一些特殊的值:1,2,3,…,我们就能得到下面一列式子:22﹣12=2×1+1;32﹣22=2×2+1;42﹣32=2×3+1;…(n+1)2﹣n2=2×n+1;观察这列式子,如果把它们所有的等式两端左右相加,抵消掉对应的项,我们可以得到(n+1)2﹣12=2×(1+2+3+…+n)+n,观察这个式子,等式右边小括号内的式子,不就是我们要求的吗?把它记为S就是:(n+1)2﹣12=2×S+n,把S表示出来,得到:S=1+2+3+…+n=n(n+1)用这个思路,可以求很多你以前不知道的和,请你仿照这个推导思路,推导一下S=12+22+32+…+n2的值.【变式9-3】(2022春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?专题9.2乘法公式【九大题型】【苏科版】TOC\o"1-3"\h\u【题型1乘法公式的基本运算】 1【题型2利用完全平方式确定系数】 3【题型3乘法公式的运算】 4【题型4利用乘法公式求值】 6【题型5利用面积法验证乘法公式】 7【题型6乘法公式的应用】 9【题型7平方差公式、完全平方公式的几何背景】 12【题型8整式乘法中的新定义问题】 17【题型9整式乘法中的规律探究】 20【知识点1乘法公式】平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。【题型1乘法公式的基本运算】【例1】(2022春•青川县期末)下列各式中计算正确的是()A.(a+2b)(a﹣2b)=a2﹣2b2 B.(﹣a+2b)(a﹣2b)=a2﹣4b2 C.(﹣a﹣2b)(a﹣2b)=﹣a2+4b2 D.(﹣a﹣2b)(a+2b)=a2﹣4b2【分析】根据平方差公式对各选项分析判断后利用排除法求解.【解答】解:A、应为(a+2b)(a﹣2b)=a2﹣(2b)2,故本选项错误;B、应为(﹣a+2b)(a﹣2b)=﹣a2+4ab﹣4b2,故本选项错误;C、(﹣a﹣2b)(a﹣2b)=﹣a2+4b2,正确;D、应为(﹣a﹣2b)(a+2b)=﹣a2﹣4ab﹣4b2,故本选项错误.故选:C.【变式1-1】(2022春•六盘水期中)下列各式中能用平方差公式计算的是()A.(﹣x+2y)(x﹣2y) B.(3x﹣5y)(﹣3x﹣5y) C.(1﹣5m)(5m﹣1) D.(a+b)(b+a)【分析】根据平方差公式的特征:(1)两个两项式相乘,(2)有一项相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【解答】解:A、不存在相同的项,不能运用平方差公式进行计算;B、﹣5y是相同的项,互为相反项是3x与﹣3x,符合平方差公式的要求;C、不存在相同的项,不能运用平方差公式进行计算;D、不存在互为相反数的项,不能运用平方差公式进行计算;故选:B.【变式1-2】(2022春•巴中期末)下列运算正确的是()A.(x+y)(y﹣x)=x2﹣y2 B.(﹣x+y)2=﹣x2+2xy+y2 C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2 D.(x+y)(﹣y+x)=x2﹣y2【分析】根据完全平方公式和平方差公式逐个判断即可.【解答】解:A、结果是y2﹣x2,故本选项不符合题意;B、结果是x2﹣2xy+y2,故本选项不符合题意;C、结果是x2+2xy+y2,故本选项不符合题意;D、结果是x2﹣y2,故本选项符合题意.【变式1-3】(2022秋•天心区校级期中)下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a) B.(﹣n2﹣m2)(m2+n2) C.(−12p+q)(q+12p) D.(2x﹣3【分析】A、原式利用平方差公式化简得到结果,不合题意;B、原式第一个因式提取﹣1变形后利用完全平方公式计算得到结果,符合题意;C、原式利用平方差公式化简得到结果,不合题意;D、原式利用平方差公式化简得到结果,不合题意.【解答】解:A、原式=b2﹣a2,本选项不合题意;B、原式=﹣(m2+n2)2,本选项符合题意;C、原式=q2−14pD、原式=4x2﹣9y2,本选项不合题意,故选:B.【题型2利用完全平方式确定系数】【例2】(2022秋•望城区期末)若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A.1个 B.2个 C.3个 D.5个【分析】本题考查运用完全平方式进行因式分解的能力,式子x2和4分别是x和2的平方,可当作首尾两项,根据完全平方公式可得中间一项为加上或减去x和2的乘积的2倍,即±4x,同时还应看到x2+4加上﹣4或﹣x2或x4【解答】解:可添加±4x,﹣4,﹣x2或x4故选:D.【变式2-1】(2022•南通模拟)如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.﹣1 C.4 D.﹣4【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【解答】解:∵2x=2×1•x,∴k=12=1,故选A.【变式2-2】(2022秋•青县期末)若9x2﹣(K﹣1)x+1是关于x的完全平方式,则常数K的值为()A.0 B.﹣5或7 C.7 D.9【分析】根据完全平方式的定义解决此题.【解答】解:9x2﹣(K﹣1)x+1=(3x)2﹣(K﹣1)x+12.∵9x2﹣(K﹣1)x+1是关于x的完全平方式,∴9x2﹣(K﹣1)x+1=(3x)2±2•3x•1+12=(3x)2±6x+12.∴﹣(K﹣1)=±6.当﹣(K﹣1)=6时,K=﹣5.当﹣(K﹣1)=﹣6时,K=7.综上:K=﹣5或7.故选:B.【变式2-3】(2022秋•崇川区校级月考)(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成()A.a<b<c B.(a﹣b)2+(b﹣c)2=0 C.c<a<b D.a=b≠c【分析】先把原式展开,合并,由于它是完全平方式,故有3x2+2(a+b+c)x+(ab+bc+ac)=[3x+33(a+b+c)]2,化简有ab+bc+ac=a2+b2+c2,那么就有(a﹣b)2+(b﹣c)2+(c﹣a)2=0,三个非负数的和等于0,则每一个非负数等于0,故可求a=b=c.故选答案【解答】解:原式=3x2+2(a+b+c)x+(ab+bc+ac),∵(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,∴3x2+2(a+b+c)x+(ab+bc+ac)=[3x+33(a+b+c)]∴ab+bc+ac=13(a+b+c)2=13(a2+b2+c2+2ab+2∴ab+bc+ac=a2+b2+c2,∴2(ab+bc+ac)=2(a2+b2+c2),即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c.故选:B.【题型3乘法公式的运算】【例3】(2022春•龙胜县期中)计算:(1−152)×(1−162)×(1A.101200 B.101125 C.101100【分析】根据a2﹣b2=(a﹣b)(a+b)展开,中间的数全部约分,只剩下第一个数和最后一个数相乘,从而得出答案.【解答】解:原式=(1−15)×(1+15)×(1−16)×(1+16)×(1−17)×(1=4=4=101故选:B.【变式3-1】(2022秋•碾子山区期末)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2.【分析】利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),=4x2﹣y2﹣(4y2﹣x2),=4x2﹣y2﹣4y2+x2,=5x2﹣5y2,当x=1,y=2时,原式=5×12﹣5×22=5﹣20=﹣15.【变式3-2】(2022春•乳山市期末)用乘法公式进行计算:(1)20192﹣2018×2020;(2)112+13×66+392.【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差;完全平方公式:(a+b)2=a2+2ab+b2.【解答】解:(1)20192﹣2018×2020=20192﹣(2022﹣1)×(2022+1)=20192﹣(20222﹣1)=1;(2)112+13×66+392=112+13×2×3×11+392=112+2×11×39+392=(11+39)2=502=2500.【变式3-3】(2022春•顺德区校级月考)计算:(2+1)(22+1)(24+1)…(264+1)【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)…(264+1)=(22﹣1)(22+1)(24+1)…(264+1)=(24﹣1)(24+1)…(264+1)=…=(264﹣1)(264+1)=2128﹣1.【题型4利用乘法公式求值】【例4】(2022秋•九龙坡区校级期中)若a2﹣b2=16,(a+b)2=8,则ab的值为()A.−32 B.32 【分析】根据a2﹣b2=16得到(a+b)2(a﹣b)2=256,再由(a+b)2=8,求出(a﹣b)2=32,最后根据ab=(a+b【解答】解:∵a2﹣b2=16,∴(a+b)(a﹣b)=16,∴(a+b)2(a﹣b)2=256,∵(a+b)2=8,∴(a﹣b)2=32,∴ab=(a+b故选:C.【变式4-1】(2022春•姜堰区校级月考)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值.【解答】解:∵4m+n=90,2m﹣3n=10,∴(m+2n)2﹣(3m﹣n)2=[(m+2n)+(3m﹣n)][(m+2n)﹣(3m﹣n)]=(4m+n)(3n﹣2m)=﹣900.【变式4-2】(2022春•双峰县期中)若x、y满足x2+y2=54,xy(1)(x+y)2(2)x4+y4.【分析】(1)原式利用完全平方公式化简,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵x2+y2=54,xy∴原式=x2+y2+2xy=54−(2)∵x2+y2=54,xy∴原式=(x2+y2)2﹣2x2y2=25【变式4-3】(2022春•包河区期中)已知(2022﹣m)(2022﹣m)=2021,那么(2022﹣m)2+(2022﹣m)2的值为()A.4046 B.2023 C.4042 D.4043【分析】利用完全平方公式变形即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴a2+b2=(a﹣b)2+2ab.∴(2022﹣m)2+(2022﹣m)2=[(2022﹣m)﹣(2022﹣m)]2+2×(2022﹣m)(2022﹣m)=4+2×2021=4046.故选:A.【题型5利用面积法验证乘法公式】【例5】(2022春•新泰市期末)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A.(a﹣b)(a+b)=a2﹣b2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.(2a﹣b)2=4a2﹣4ab+b2【分析】利用两个图形面积之间的关系进行解答即可.【解答】解:如图,图甲中①、②的总面积为(a+b)(a﹣b),图乙中①、②的总面积可以看作两个正方形的面积差,即a2﹣b2,因此有(a+b)(a﹣b)=a2﹣b2,故选:A.【变式5-1】(2022春•乐平市期末)如图所示,两次用不同的方法计算这个图的面积,可验证整式乘法公式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)(a+2b)=a2+3ab+2b2 C.(a+b)2=a2+2ab+b2 D.(a﹣b)2=a2﹣2ab+b2【分析】用代数式表示各个部分以及总面积即可得出答案.【解答】解:大正方形的边长为a+b,因此面积为(a+b)2,四个部分的面积分别为a2、ab、ab、b2,由面积之间的关系得,(a+b)2=a2+2ab+b2,故选:C.【变式5-2】(2022春•锦州期末)如图1,在边长为a的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为()A.(a﹣3)2=a2﹣6a+9 B.(a+3)2=a2+6a+9 C.a(a+3)=a2+3a D.(a+3)(a﹣3)=a2﹣9【分析】用代数式分别表示图1、图2中阴影部分的面积即可.【解答】解:图1中,阴影部分的面积可以看作是两个正方形的面积差,即a2﹣32=a2﹣9,图2是长为a+3,宽为a﹣3的长方形,因此面积为(a+3)(a﹣3),所以有(a+3)(a﹣3)=a2﹣9,故选:D.【变式5-3】(2022•郫都区模拟)如图,在边长为(x+a)的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,由左右两个阴影部分面积,可以得到一个恒等式是()A.(x+a)2﹣a2=x(x+2a) B.x2+2ax=x(x+2a) C.(x+a)2﹣x2=a(a+2x) D.x2﹣a2=(x+a)(x﹣a)【分析】根据阴影部分面积相等得到恒等式即可.【解答】解:第一幅图阴影部分面积=(x+a)2﹣a2,第二幅图阴影部分面积=(x+a+a)x=x(x+2a),∴(x+a)2﹣a2=x(x+2a),故选:A.【题型6乘法公式的应用】【例6】(2022春•榆次区期中)如图1,从边长为(a+5)cm的大正方形纸片中剪去一个边长为(a+2)cm的小正方形,剩余部分(如图2)沿虚线剪开,按图3方式拼接成一个长方形(无缝隙不重合)则该长方形的面积为()A.9cm2 B.(6a﹣9)cm2 C.(6a+9)cm2 D.(6a+21)cm2【分析】由图形可知长方形的长为两正方形的和,宽为两长方形的差,据此可得答案.【解答】解:根据题意,长方形的面积为[(a+5)+(a+2)][(a+5)﹣(a+2)]=3(2a+7)=(6a+21)cm,故选:D.【变式6-1】(2022秋•西峰区期末)如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).【分析】设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,所以正方形MFNP的面积为(a+b)2=(a﹣b)2+4ab=900.【解答】解:)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.【变式6-2】(2022春•湖州期末)如图,把一块面积为100的大长方形木板被分割成2个大小一样的大正方形①,1个小正方形②和2个大小一样的长方形③后,如图摆放,且每个小长方形③的面积为16,则标号为②的正方形的面积是()A.16 B.14 C.12 D.10【分析】设标号为①的正方形的边长为x,标号为②的正方形的边长为y,根据图形及已知条件可将③长方形的长和宽表示出来,再根据每个小长方形的面积均为16及大长方形的面积为100,得出x2与y2的数量关系,然后解得y2即可.【解答】解:设标号为①的正方形的边长为x,标号为②的正方形的边长为y,则标号为③的长方形长为(x+y),宽为(x﹣y),∵每个小长方形③的面积均为16,∴(x+y)(x﹣y)=16,∴x2﹣y2=16,∴x2=16+y2∵大长方形的长等于标号为③的小长方形的长与标号为①的正方形的边长的和,宽等于标号为③的小长方形的宽与标号为①的正方形的边长的和,∴大长方形的长为:[(x+y)+x]=2x+y,宽为:[(x﹣y)+x]=2x﹣y,∵大长方形的面积为100,∴(2x+y)(2x﹣y)=100,∴4x2﹣y2=100,∴4(16+y2)﹣y2=100,∴y2=12,即标号为②的正方形的面积为y2=12.故选:C.【变式6-3】(2022秋•香坊区校级期中)如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【分析】(1)结合图形、根据平方差公式计算即可;(2)根据图形分别表示出2班的卫生区的面积和1班的卫生区,根据平方差公式和完全平方公式化简、求差即可.【解答】解:(1)八年3班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;八年4班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;(2)[2x﹣(x﹣2y)]2﹣(x﹣2y)2=8xy.答:2班的卫生区的面积比1班的卫生区的面积多8xy平方米.【题型7平方差公式、完全平方公式的几何背景】【例7】(2008秋•上海校级期中)我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(a﹣b)2=a2﹣2ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2=a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式a2﹣b2=(a+b)(a﹣b);(3)除了拼成图四的图形外还能拼成其他的图形能验证公式成立,请试画出一个这样的图形,并标上相应的字母.【分析】(1)此题只需将大正方形的边长表示为a,小正方形的边长表示为b即可,(2)此题只需将两个图形的面积表示出来写成等式即可;(3)此题还可以拼成一个矩形来验证公式的成立.【解答】解:(1).(2)根据两图形求得两图形的面积分别为:S1=a2﹣b2;S2=12(2a+2b)(a﹣b)=(a+b)(a﹣(3)拼成的图形如下图所示:【变式7-1】(2022春•西城区校级期中)阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=(a+b)2﹣4ab.(2)观察图4,请写出图4所表示的代数恒等式:(2a+b)(a+b)=2a2+3ab+b2.(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2=a2+2ab+b2,仿照图4画出你的拼图并标出相关数据.【分析】(1)利用完全平方公式找出(a+b)2、(a﹣b)2、ab之间的等量关系即可;(2)根据面积的两种表达方式得到图4所表示的代数恒等式;(3)由已知的恒等式,画出相应的图形即可.【解答】解:(1)(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=(a+b)2﹣4ab.(2)图4所表示的代数恒等式:(2a+b)(a+b)=2a2+3ab+b2.(3)如图所示:故答案为:(a﹣b)2=(a+b)2﹣4ab;(2a+b)(a+b)=2a2+3ab+b2.【变式7-2】(2022春•武侯区校级期中)[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2﹣(a﹣b)2=4ab;(2)根据(1)中的等量关系解决如下问题:若x+y=6,xy=112,求(x﹣y)(3)根据图③,写出一个代数恒等式:(a+b)3=a3+3a2b+3ab2+b3;(4)已知a+b=3,ab=1,利用上面的规律求a3【分析】(1)观察图②大正方形面积减中间小正方形面积等于4个长方形面积;(2)灵活利用上题得出的结论,灵活计算求解.(3)利用两种方式求解长方体的体积,得出关系式.(4)利用上题得出得关系式,进行变换,最终求出答案.【解答】解:(1)用两种方法表示出4个长方形的面积:即大正方形面积减中间小正方形面积等于4个长方形面积,可得:(a+b)2﹣(a﹣b)2=4ab,(2)由题(1)可知:(x+y)2﹣(x﹣y)2=4xy,∴﹣(x﹣y)2=(x+y)2﹣4xy=36﹣4×11(3)利用两种方式求解长方体得体积,即可得出关系式:(a+b)3=a3+3a2b+3ab2+b3.(4)由(3)可知a3+b3=(a+b)3﹣3a2b﹣3ab2=(a+b)3﹣3ab(a+b),把a+b=3,ab=1代入得:a3+b3=33﹣3×1×3=18.∴a3【变式7-3】(2022春•贺兰县期中)在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果证明上述速算方法的正确性.【分析】(1)利用面积法即可解决问题;(2)模仿例题,构建几何模型,利用面积法计算即可;拓展应用:模仿例题计算57×53即可;探究规律,利用规律解决问题即可;【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;【题型8整式乘法中的新定义问题】【例8】(2022春•嘉兴期中)定义:对于三个不是同类项的单项式A,B,C,若A+B+C可以写成(a+b)2的形式,则称这三项为“完全搭配项”,若单项式x2,4和m是完全搭配项,则m可能是4x或﹣4x或116x4【分析】分为三种情况:①m为第二项时,②当m为第一项时,根据完全平方式求出m即可.【解答】解:①x2±4x+4,此时m=±4x,②(14x2)2+x2+4,此时m=(14x2)2=1故答案为:4x或﹣4x或116x4【变式8-1】(2022春•成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.【分析】(1)根据“神秘数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算,进而判断即可;(3)运用平方差公式进行计算,进而判断即可.【解答】解:(1)是,理由如下:∵28=82﹣62,2012=5042﹣5022,∴28是“神秘数”;2012是“神秘数”;(2)“神秘数”是4的倍数.理由如下:(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∴“神秘数”是4的倍数;(3)设两个连续的奇数为:2k+1,2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k,而由(2)知“神秘数”是4的奇数倍,不是偶数倍,但8不是4的偶数倍,所以两个连续的奇数的平方差不是神秘数.【变式8-2】(2022春•博山区期末)定义:如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为:“奇异数”.如8,16,24都是“奇异数”.(1)写出两个奇异数(8,16,24除外);(2)试问偶数6050是不是奇异数?为什么?【分析】(1)根据奇异数的定义判断即可;(2)偶数6050不是奇异数,根据两个连续正奇数的平方差,即(n+2)2﹣n2=6050,求出n的值,判断即可.【解答】解:(1)奇异数可以为32,40;(2)不是奇异数,理由为:假设偶数6050为奇异数,即为两个连续正奇数的平方差,可设(n+2)2﹣n2=6050,分解因式得:2(2n+2)=6050,解得:n=1511.5,可得n不是奇数,不符合题意,则偶数6050不是奇异数.【变式8-3】(2022•永川区模拟)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则称这个正整数为“非智慧数”.例如:22﹣12=3;32﹣22=5;32﹣12=8;42﹣32=7;42﹣22=12;42﹣12=15;…,等等.因此3,5,8,…,都是“智慧数”;而1,2,4,…,都是“非智慧数”.对于“智慧数”,有如下结论:①设k为正整数(k≥2),则k2﹣(k﹣1)2=2k﹣1.∴除1以外,所有的奇数都是“智慧数”;②设k为正整数(k≥3),则k2﹣(k﹣2)2=4(k﹣1).∴都是“智慧数”.(1)补全结论②中的空缺部分;并求出所有大于5而小于20的“非智慧数”;(2)求出从1开始的正整数中从小到大排列的第103个“智慧数”.【分析】(1)由平方差公式即可得出答案,根据①②的结论除去奇数及4的正整数倍数,即可得所有大于5而小于20的“非智慧数”;(2)根据①②可判断出在1,2,3,4四个数中,只有1个“智慧数”3;k为正整数时,则4k+1,4k+3是奇数,4k+2,4k+4是偶数,而4k+2是“非智慧数”,4k+1,4k+3,4k+4是“智慧数“.从而根据循环规律判断出结果.【解答】解:(1)k2﹣(k﹣2)2=(k+k﹣2)(k﹣k+2)=2(2k﹣2)=4(k﹣1);智慧数是除4以外,所有4的正整数倍数.根据①,除去奇数:7,9,11,13,15,17,19;根据②,除去4的正整数倍数:8,12,16.则所有大于5而小于20的“非智慧数”有:6,10,14,18.(2)在1,2,3,4四个数中,只有1个“智慧数”3.当k为正整数时,则4k+1,4k+3是奇数,4k+2,4k+4是偶数,而4k+2是“非智慧数”,4k+1,4k+3,4k+4是“智慧数”.∴在从1开始的正整数中前4个正整数只有3为“智慧数”,此后每连续4个数中有3个“智慧数”.∵100=1+3×33,∴4×(33+1)=136.又∵136后面的3个“智慧数”为137,139,140,∴从1开始的正整数中从小到大排列的第103个“智慧数”是140.【题型9整式乘法中的规律探究】【例9】(2022春•江阴市期中)观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1 B.﹣22019﹣1 C.22019−13【分析】先计算(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1]=(﹣2)2019﹣1,然后再计算所给式子.【解答】解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=2故选:D.【变式9-1】(2022•丰顺县校级开学)解答下列问题.(1)观察下列各式并填空:32﹣12=8×1;52﹣32=8×2;①72﹣52=8×3;②92﹣72=8×4;③112﹣92=8×5;④132﹣112=8×6;…(2)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)你能运用平方差公式来说明(2)中你所写规律的正确性吗?【分析】(1)观察算式,补全空白即可;(2)观察算式,归纳总结得到一般性规律,写出即可;(3)利用平方差公式证明即可.【解答】解:(1)观察下列算式:32﹣12=8×1;52﹣32=8×2;①72﹣52=8×3;②92﹣72=8×4;③112﹣92=8×5;④132﹣112=8×6;…故答案为:3,7,112,11,6;(1)通过观察归纳,猜想第n个式子为(2n+1)2﹣(2n﹣1)2=8n;(2)证明:(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n•2=8n,所以(2n+1)2﹣(2n﹣1)2=8n得证.【变式9-2】(2022秋•肥城市期中)我们知道,1+2+3+…+n=n(n+1)首先,我们知道:(n+1)2=n2+2n+1,变形一下,就是(n+1)2﹣n2=2n+1,依次给n一些特殊的值:1,2,3,…,我们就能得到下面一列式子:22﹣12=2×1+1;32﹣22=2×2+1;42﹣32=2×3+1;…(n+1)2﹣n2=2×n+1;观察这列式子,如果把它们所有的等式两端左右相加,抵消掉对应的项,我们可以得到(n+1)2﹣12=2×(1+2+3+…+n)+n,观察这个式子,等式右边小括号内的式子,不就是我们要求的吗?把它记为S就是:(n+1)2﹣12=2×S+n,把S表示出来,得到:S=1+2+3+…+n=n(n+1)用这个思路,可以求很多你以前不知道的和,请你仿照这个推导思路,推导一下S=12+22+32+…+n2的值.【分析】根据已知等式得到n3﹣(n﹣1)3=3n2﹣3n+1公式的n的式子,相加推导出12+22+32+42+…+n2的公式.【解答】解:∵n3﹣(n﹣1)3=3n2﹣3n+1,∴当式中的n从1、2、3、依次取到n时,就可得下列n个等式:13﹣03=3﹣3+1,23﹣13=3×22﹣3×2+1,33﹣23=3×32﹣3×3+1,…,n3﹣(n﹣1)3=3n2﹣3n+1,将这n个等式的左右两边分别相加得:n3=3×(12+22+32+…+n2)﹣3×(1+2+3+…+n)+n,即12+22+32+42+…+n2=n3+3(1+2+3+⋯+n)−n3=1【变式9-3】(2022春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=a100﹣1(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?【分析】(1)利用多项式乘以多项式法则计算得到结果,归纳总结得到一般性规律,即可确定出结果;(2)利用得出的结果将原式变形,计算即可得到结果.【解答】解:(1)a2﹣1;a3﹣1;a4﹣1;a100﹣1;故答案为:a2﹣1;a3﹣1;a4﹣1;a100﹣1;(2)①(2﹣1)(2199+2198+2197+…+22+2+1)=2200﹣1,由于2﹣1=1,则2199+2198+2197+…+22+2+1=2200﹣1;②∵a6﹣1=(a﹣1)(a5+a4+a3+a2+a+1)=0,∴a6=1.第9章整式乘法与因式分解章末题型过关卷【苏科版】参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2022秋·山东滨州·八年级统考期中)若4x2+k−1x+25A.11 B.21 C.21或−19 D.11或−19【答案】C【分析】利用完全平方公式的结构特征判断即可得出答案.【详解】解:4x∴k−1=±2×2×5解得:k=21或k=−19,故选:C.【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解题的关键.2.(3分)(2022秋·新疆乌鲁木齐·八年级兵团二中校考期中)要使x2+ax+5⋅−6x3的展开式中不含A.−1 B.0 C.16 【答案】B【分析】先根据多项式与单项式相乘运算法则,进行计算化简,再令x4【详解】解:x==−6x∵x2+ax+5⋅∴−6a=0,∴a=0;故选:B.【点睛】此题考查了单项式与多项式相乘的运算,熟练掌握单项式与多项式相乘的运算法则是解答此题的关键.3.(3分)(2022秋·上海奉贤·七年级统考期中)如果计算(x+a)(x−2)的结果是一个二项式,那么a的值是(
)A.1 B.2或0 C.3 D.4【答案】B【分析】先根据多项式乘多项式法则展开,再合并同类项,根据结果是一个二项式,即可求出a的值.【详解】解:∵(x+a)(x−2)=x∴a−2=0或−2a=0,∴a=2或0,故选:B.【点睛】本题考查了多项式乘多项式、二项式的定义,理解二项式的含义是解题的关键.4.(3分)(2022春·山东济宁·七年级济宁学院附属中学校考期中)现定义运算“△”,对于任意有理数a,b,都有a△b=ab+b,例如:3△5=3×5+5=20,由此可知x−1△x等于(
A.x2 B.x2−2x C.x【答案】A【分析】原式利用题中的新定义化简,计算即可得到结果.【详解】解:根据题中的新定义得:x−1△x=故选:A.【点睛】本题考查整式的混合运算,读懂题目中定义的新运算是解题的关键.5.(3分)(2022秋·福建福州·八年级校考期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如8=32−12A.614 B.624 C.634 D.642【答案】B【分析】根据2n+12【详解】解:依题意设连续的两个奇数为2n−1,2n+1,∴2n+1解得:n≤12∵25∴在不超过100的正整数中,所有的“和谐数”之和为:3=−==625−1=624故选:B.【点睛】本题考查平方差公式,理解“和谐数”的意义是解决问题的前提,得出计算结果的规律性是解决问题的关键.6.(3分)(2022秋·河南信阳·八年级河南省淮滨县第一中学校考期末)若x2+x−2=0,则x3A.2020 B.2019 C.2018 D.-2020【答案】C【分析】将x2+x−2=0变形为x2=−x+2,【详解】解:∵x2∴x2=−x+2,∴x=x·=x·(−x+2)+2==2+2016=2018.故选:C【点睛】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.7.(3分)(2022秋·四川巴中·八年级校考期中)如图:正方形卡片A类、B类和长方形卡片C类若干张,要拼一个长为a+2b,宽为2a+b的大长方形,则需C类卡片张数为(
)A.5 B.4 C.3 D.6【答案】A【分析】先分别求出卡片A、B、C的面积,然后再求得大长方形的面积,即可确定C类卡片张数.【详解】解:∵卡片A、B、C的面积分别为a2、∴大长方形是由2个A类正方形、5个C类长方形、2个B类正方形组成.故选:A.【点睛】本题主要考查了多项式乘以多项式,掌握多项式乘多项式的运算法则是解答本题的关键.8.(3分)(2022秋·吉林·八年级吉林省第二实验学校校考期中)如图所示,边长分别为a和b的两个正方形拼接在一起,则图中阴影部分的面积为(
)A.12b2 B.12a2【答案】A【分析】先将原图形补成一个大的长方形,再用大长方形的面积减去阴影周围三个直角三角形的面积即可求解.【详解】解:如图,图中阴影部分的面积为a+b=ab+=1故选:A.【点睛】本题考查单项式乘多项式的几何应用,会利用割补法求解不规则图形的面积是解答的关键.9.(3分)(2022秋·山东济宁·八年级济宁市第十五中学校考期中)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.3【答案】D【分析】把已知的式子化成12[(a-b)2+(a-c)2+(b-c)2【详解】原式=12(2a2+2b2+2c2=12[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2=12[(a-b)2+(a-c)2+(b-c)2=12=3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.10.(3分)(2022秋·重庆·八年级重庆市兼善中学校联考期中)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式x4−y4,因式分解的结果是x−yx+yx2+y2,若取x=9,y=9时,则各个因式的值为x−y=0,x+y=18,A.201030 B.201010 C.301020 D.203010【答案】B【详解】解:x3-xy2=x(x2-y2)=x(x+y)(x-y),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2022秋·黑龙江大庆·七年级校考期中)若5am+1b2与3an+2bn的积是15a8b4,则nm=_____.【答案】8【分析】根据单项式乘单项式的乘法法则计算,然后根据相同字母的指数相等列方程组即可求出m、n.【详解】解:∵5a∴m+n+3=82+n=4解方程组得:m=3n=2∴n故答案为8.【点睛】本题考查了单项式乘单项式,熟记法则是解题的关键.12.(3分)(2022秋·上海·七年级期中)计算:−2a【答案】−6【分析】先计算整式的乘法,再计算整式的加减法即可得.【详解】原式=−a=−6a故答案为:−6a【点睛】本题考查了整式的乘法与加减法,熟练掌握整式的运算法则是解题关键.13.(3分)(2022春·四川成都·八年级校考期中)已知二次三项式x2−4x+m有一个因式是(x−3),则【答案】3【分析】根据二次三项式x2−4x+m有一个因式是(x−3),且x2【详解】解:∵二次三项式x2−4x+m有一个因式是x2∴x−m=x−3,m=3,故答案为3.【点睛】本题考查分组分解法因式分解,解题的关键是凑因式(x−3).14.(3分)(2022春·广东河源·八年级校考期中)若a+b=2,ab=1,则【答案】2【分析】利用完全平方公式变形,将a+b与ab代入计算即可求出值.【详解】解:∵a+b=2,∴a2故答案为:2.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.15.(3分)(2022春·山东青岛·七年级校考期中)观察下列各式的规律:(a−b)(a+b)=(a−b)(a−b)…可得到(a−b)a【答案】a【分析】发现规律,根据规律即可得到计算结果.【详解】根据规律可得:(a−b)a故答案为:a2021【点睛】本题考查了多项式乘多项式,发现规律是解题的关键.16.(3分)(2022春·浙江温州·七年级统考期中)如图,把一个大长方形ABCD分割成5小块,其中长方形①号和②号,③号和④号的形状和大小分别相同,⑤号是正方形,则⑤中的面积与大长方形ABCD的面积之比为_______.【答案】8∶21.【分析】设长方形①号和②号的长为a,宽为b,根据长方形的对边相等及正方形的四边相等分别表示出相关线段长,最后根据AB=CD得到a=3b,由此可得⑤号正方形的边长为4b,大长方形ABCD的长为7b,宽为6b,由此即可求得答案.【详解】解:如图,设长方形①号和②号的长为a,宽为b,则CE=FG=FM=a,CG=EF=FH=b,∴⑤号正方形的边长DK=DE=ME=FM+EF=a+b,长方形③号和④号的宽AK=LM=BL=HG=FG-FH=a-b,∴大长方形ABCD的宽BC=AD=AK+DK=a-b+a+b=2a,∴长方形③号和④号的长AL=BG=BC-CG=2a-b,∴AB=AL+BL=2a-b+a-b=3a-2b,CD=DE+CE=a+b+a=2a+b∵大长方形ABCD的长AB=CD,∴3a-2b=2a+b,解得:a=3b,∴⑤号正方形的边长DK=a+b=4b,大长方形ABCD的长CD=2a+b=7b,大长方形ABCD的宽AD=2a=6b,∴⑤中的面积与大长方形ABCD的面积之比=(4b)2∶(6b·7b)=16b2∶42b2=8∶21,故答案为:8∶21.【点睛】本题考查了长方形的对边相等与正方形的四边相等的性质以及它们的面积计算,能够正确设出长方形①号和②号的长为a,宽为b,利用相关图形的性质求得a=3b是解决本题的关键.三.解答题(共7小题,满分52分)17.(6分)(2022秋·贵州遵义·八年级校考期中)因式分解:(1)x(2)x−1【答案】(1)xy(2)x+1【分析】(1)先提公因式,再利用完全平方公式进行因式分解,即可求解;(1)先利用整式的乘法计算x−1x+3【详解】(1)解:x=xy=xy(2)解:x−1===【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.18.(6分)(2022秋·重庆九龙坡·八年级重庆市育才中学校考期中)先化简,再求值:已知单项式−2xm+4y2与x3【答案】4m【分析】先计算单项式−2xm+4y2与x3y的积,根据同类项定义可得【详解】解:−2x∵单项式−2xm+4y2与∴m+7=6,解得m=−1,原式=6=4当m=−1时,原式=4×−1【点睛】此题主要考查了同类项,单项式乘单项式以及整式乘法的化简求值,关键是掌握同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫同类项.19.(8分)(2022秋·上海·七年级校考期中)对于任何实数,我们规定符号abcd(1)按照这个规定请你计算−24(2)按规定请写出a3(3)当a取−2的相反数时,请计算a3【答案】(1)−2(2)2(3)264【分析】(1)根据新定义的运算法则计算即可;(2)根据新定义的运算法则及整式的混合运算法则计算即可;(3)将a=2代入(2)中结论即可求解.【详解】(1)解:−2431.2(2)解:a=4=4=2a(3)解:−2的相反数是2,当a=2时,a3+6a2a【点睛】本题考查新定义运算,整式的混合运算,含乘方的有理数的混合运算,掌握新定义的运算法则并正确计算是解题的关键.20.(8分)(2022秋·四川乐山·八年级统考期中)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“−a”,得到的结果为6x2+11x−10;乙由于漏抄了第二个多项式中x(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.【答案】(1)a=−5(2)6【分析】(1)按乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【详解】(1)(2x−a)(3x+b)=6=6=6x(2x+a)(x+b)=2=2=2x∴2b−3a=112b+a=−9∴a=−5b=−2(2)(2x−5)(3x−2)=6=6x【点睛】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,解题时要细心.21.(8分)(2022秋·重庆万州·八年级重庆市万州新田中学校考期中)阅读材料:若m2−2mn+2n2−8n+16=0解:∵m2∴m∴m−n2+n−42=0∴m−n2=0且∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0(2)已知△ABC的三边长a、b、c,其中a2+b2−10a−26b+194=0【答案】(1)2;0;(2)△ABC的周长为30.【分析】(1)模仿材料将方程配成完全平方和等于0的形式,再由平方的非负性即可得到字母的值,从而得到答案.(2)模仿材料将方程配成完全平方和等于0的形式,再由平方的非负性即可得到字母的值,最后根据三角形周长公式进行计算即可.【详解】(1)解:∵a2∴(a∴(a−2)2∵(a−2)2≥0,∴(a−2)2=0,∴a=2,(2)∵a2∴a2∴(a−5)2∵(a−5)2≥0,∴(a−5)2=0,∴a=5,∵c=12,∴△ABC的周长为5+12+13=30.【点睛】本题考查完全平方公式的应用,非负数的性质,因式分解的应用.掌握平方的非负性是解题关键.22.(8分)(2022春·江苏无锡·七年级校考期中)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到a+2ba+b(1)写出图2中所表示的数学等式.(2)利用(1)中所得到的结论,解决下面问题:已知a+b+c=11,ab+bc+ac=38,求a2(3)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为5a+7b8a+5b长方形,那么x+y+z=【答案】(1)(a+b+c)(2)45(3)156【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a+b+c=11,ab+bc+ac=38,代入(1)中得到的关系式,然后进行计算即可;(3)将x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形的面积的和等于(5a+7b)(8a+5b)即可得到答案.【详解】(1)解:(a+b+c)2(2)a==121−76=45(3)由题意可知:xaxa∴x=40,y=35,z=81,∴x+y+z=156.故答案为:156.【点睛】本题考查的是多项式乘多项式、完全平方公式的应用,利用面积法列出等式是解题的关键.23.(8分)(2022秋·上海嘉定·七年级统考期中)如图,两个形状大小相同的长方形ABCD和长方形CEFG,其中AB=a,BC=b,且b>a>0.(1)图1中阴影部分的面积为.(用代数式表示)(2)如图2,分别连接BD、DF、BF,试比较△BCD的面积与△DFG的面积的大小,并说明理由.(3)求图2中阴影部分的面积,写出解题过程.(用代数式表示)【答案】(1)a(2)S△BCD(3)1【分析】(1)两个形状大小相同的长方形ABCD和长方形CEFG,可知AB=DC=DH=a,由此可求出阴影部分的面积;(2)△BCD的面积是12ab,△DFG的面积是(3)阴影部分的面积是梯形BCGH的面积减去S△DFG,再减去S【详解】(1)解:根据图示可知,AB=DC=DH=a,∴阴影部分的面积为:a2故答案为:a2(2)解:根据图示可知,DC=AB=a,DG=b−a,FG=a,S△BCD=1∵b>a>0,∴S△BCD(3)解:S梯形BCGF=12∴阴影部分的面积为S梯形BCGF−∴阴影部分的面积为12【点睛】本题主要考查整式的乘除法与图形面积的计算,掌握图形面积的计算公式,整式的混合运算是解题的关键.专题9.3因式分解【九大题型】【苏科版】TOC\o"1-3"\h\u【题型1因式分解的意义】 1【题型2利用因式分解求系数的值】 3【题型3利用公式法进行因式分解求代数式的值】 4【题型4利用平方差公式进行因式分解确定整除问题】 6【题型5因式分解】 7【题型6利用添项进行因式分解】 9【题型7利用拆项进行因式分解】 10【题型8利用因式分解确定三角形的形状】 12【题型9因式分解在阅读理解中的运用】 13
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 避免常见缝纫错误的注意事项与解决方案
- 毕业音乐会观后感
- 2025年互联网医疗平台在线问诊医患沟通效率评估报告
- 2025年互联网医疗平台在线问诊平台与患者疾病风险评估报告
- 2019-2025年二级注册建筑师之法律法规经济与施工考前冲刺试卷A卷含答案
- 2025年互联网医疗平台在线问诊服务质量与医疗资源整合效率策略研究报告
- 2025年劳务员之劳务员专业管理实务通关提分题库及完整答案
- 2025年互联网金融平台用户信任度提升策略与心理行为分析报告
- 将错就错题目类型及答案
- 《新大学英语》课件-B4U7 Entrepreneurship and Innovation
- 氨区作业安全培训课件
- 2025内蒙古中考:生物必背知识点
- 2025年湖北省新高考信息卷(一)化学试题及答案
- 岩土工程设计课件
- 校医招聘考试试题及答案
- 新能源安规试题及答案
- 2O25中国商业航天创新生态报告
- 江苏省南通等六市2025届高三最后一卷英语试卷含解析
- 瓷砖期付款合同协议
- 路桥施工作业指导书汇编
- 《全球市场分析与发展趋势》课件
评论
0/150
提交评论