2024届海南省农垦实验中学高三第一次调研测试数学试卷含解析_第1页
2024届海南省农垦实验中学高三第一次调研测试数学试卷含解析_第2页
2024届海南省农垦实验中学高三第一次调研测试数学试卷含解析_第3页
2024届海南省农垦实验中学高三第一次调研测试数学试卷含解析_第4页
2024届海南省农垦实验中学高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省农垦实验中学高三第一次调研测试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为()A. B.C. D.2.已知向量,,,若,则()A. B. C. D.3.已知实数、满足不等式组,则的最大值为()A. B. C. D.4.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.5.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.6.已知全集,则集合的子集个数为()A. B. C. D.7.方程在区间内的所有解之和等于()A.4 B.6 C.8 D.108.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.9.设复数满足,则()A. B. C. D.10.若复数满足,则()A. B. C. D.11.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A.56 B.72 C.88 D.4012.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数为____________.14.若,,则___________.15.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.16.已知三棱锥中,,,,且二面角的大小为,则三棱锥外接球的表面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,与均为等腰直角三角形,,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.18.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.19.(12分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由20.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)21.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.22.(10分)已知函数,.(1)求函数的极值;(2)当时,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.2、A【解析】

根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】,,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.3、A【解析】

画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4、C【解析】

如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.5、A【解析】

由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.6、C【解析】

先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题7、C【解析】

画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.8、C【解析】

计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.9、D【解析】

根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.10、B【解析】

由题意得,,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.11、B【解析】

,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,,,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.12、B【解析】

基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】

要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.14、【解析】

因为,所以,又,所以,则,所以.15、【解析】

法一:根据直角三角形的性质和勾股定理得,,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,,,,,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,,,设,则,令,所以时,,在上单调递增,,,.法二:,,令,,,,,,,,,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.16、【解析】

设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,将的长度求出或用球半径表示,再利用余弦定理即可建立方程解得半径.【详解】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,如图所示因为,,所以,,,又二面角的大小为,则,,所以,设外接球半径为R,则,,在中,由余弦定理,得,即,解得,故三棱锥外接球的表面积.故答案为:.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)取中点,连接,,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【详解】解析:(1)取中点,连接,,由已知可得,,,∵侧面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)设,则,建立如图所示空间直角坐标系,则,,,,,,,,设平面的法向量为,则,令得.同理可求得平面的法向量,∴.【点睛】本题考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者线面角的问题时,常建立空间直角坐标系,通过求面的法向量、线的方向向量,继而求解.特别地,对于线面角问题,法向量与方向向量的余角才是所求的线面角,即两个向量夹角的余弦值为线面角的正弦值.18、(1)见解析;(2)【解析】

(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为.解法二:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.19、(1)见解析(2)存在,【解析】

(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即①当时,即恒成立(当且仅当时取等号),故②当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.20、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】

(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.∴;;;.∴随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.21、(1)证明见详解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论