版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题81数列求和【题型归纳目录】题型一:通项分析法题型二:公式法题型三:错位相减法题型四:分组求和法题型五:裂项相消法题型六:倒序相加法题型七:并项求和题型八:先放缩后裂项求和题型九:分段数列求和【典例例题】题型一:通项分析法例1.(2022·全国·高三专题练习)求和.例2.数列9,99,999,的前项和为A. B. C. D.例3.求数列1,,,,,的前项之和.【方法技巧与总结】先分析数列通项的特点,再选择合适的方法求和是求数列的前项和问题应该强化的意识.题型二:公式法例4.已知等差数列中,,.(1)求的通项公式;(2)令,求数列的前项和.例5.如图,从点做轴的垂线交曲线于点,曲线在点处的切线与轴交于点,再从做轴的垂线交曲线于点,依次重复上述过程得到一系列点:,;,;,,记点的坐标为,,2,,.(Ⅰ)试求与的关系;(Ⅱ)求.【方法技巧与总结】针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解.题型三:错位相减法例6.(2022·全国·高三专题练习)“一尺之棰,日取其半,万世不竭”出自我国古代典籍《庄子·天下》,其中蕴含着等比数列的相关知识.已知长度为4的线段,取的中点,以为边作等边三角形(如图①),该等边三角形的面积为,在图①中取的中点,以为边作等边三角形(如图②),图②中所有的等边三角形的面积之和为,以此类推,则___________;___________.例7.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知数列的前n项和,记,则数列的前n项和_______.例8.(2022·全国·高三专题练习)在平面四边形中,的面积是面积的倍,又数列满足,当时,恒有,设的前项和为,则所有正确结论的序号是___________.①为等比数列;②为递减数列;③为等差数列;④例9.(2022·云南师大附中高三阶段练习)已知数列的前n项和为,.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.例10.(2022·全国·模拟预测(文))若数列满足,,.(1)求的通项公式;(2)若,求数列的前项和.例11.(2022·全国·模拟预测)已知等差数列的前n项和为,数列为等比数列,且,.(1)求数列,的通项公式;(2)若,求数列的前n项和.例12.(2022·全国·高三专题练习)已知数列{}为等差数列,,,数列{}的前n项和为,且满足.(1)求{}和{}的通项公式;(2)若,数列{}的前n项和为,且对恒成立,求实数m的取值范围.【方法技巧与总结】错位相减法求数列的前n项和(1)适用条件若是公差为的等差数列,是公比为的等比数列,求数列{an·bn}的前n项和.(2)基本步骤(3)注意事项①在写出与的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出;②作差后,应注意减式中所剩各项的符号要变号.等差乘等比数列求和,令,可以用错位相减法.①②得:.整理得:.题型四:分组求和法例13.(2022·广西柳州·模拟预测(理))已知数列{}满足,.(1)证明{}是等比数列,并求{}的通项公式;(2)求数列的前n项和.例14.(2022·青海·海东市第一中学模拟预测(文))已知正项数列满足,且.(1)求数列的通项公式;(2)求数列的前项和.例15.(2022·上海松江·二模)在等差数列中,已知,.(1)求数列的通项公式;(2)若数列是首项为1,公比为3的等比数列,求数列的前项和.【方法技巧与总结】(1)分组转化求和数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n项和的数列求和.(2)分组转化法求和的常见类型题型五:裂项相消法例16.(2022·全国·高三专题练习)记为数列的前n项和,已知是公差为的等差数列.(1)求的通项公式;(2)证明:.例17.(2022·全国·高三专题练习)记为数列的前项和,已知,且.(1)求数列的通项公式;(2)已知数列满足________,记为数列的前项和,证明:.从①
②两个条件中任选一个,补充在第(2)问中的横线上并作答.例18.(2022·全国·高三专题练习(理))已知正项数列{}中,,是其前n项和,且满足(1)求数列{}的通项公式:(2)已知数列{}满足,设数列{}的前n项和为,求的最小值.例19.(2022·浙江·模拟预测)已知数列的首项为正数,其前项和满足.(1)求实数的值,使得是等比数列;(2)设,求数列的前项和.例20.(2022·湖南·一模)已知等差数列中,前项和为,,为等比数列且各项均为正数,,且满足,.(1)求与;(2)设,,求的前项和.例21.(2022·全国·高三专题练习)已知数列前n项和为,且,记.(1)求数列的通项公式;(2)设数列的前n项和为,求.例22.(2022·河南·洛宁县第一高级中学一模(文))已知数列是公差不为零的等差数列,,且,,成等比数列.(1)求的通项公式;(2)设,求数列的前n项和.例23.(2022·山西大同·高三阶段练习)已知数列的前n项和满足.(1)证明:数列是等比数列;(2)设数列的前n项和为,求证:.例24.(2022·江西九江·三模(理))已知数列的前项和为,且满足,.(1)求;(2)求数列的前项和.例25.(2022·广东·大埔县虎山中学高三阶段练习)已知各项均不相等的等差数列的前4项和为10,且是等比数列的前3项.(1)求;(2)设,求的前n项和.例26.(2022·全国·高三专题练习)等比数列中,首项,前项和为,且满足.(1)求数列的通项公式;(2)若,求数列的前项和.例27.(2022·全国·高三专题练习)已知等差数列的前n项和为,且,;数列的前n项和,且,数列的,.(1)求数列、的通项公式;(2)若数列满足:,当时,求证:.例28.(2022·广东惠州·高三阶段练习)记是公差不为零的等差数列的前项和,若,是和的等比中项.(1)求数列的通项公式;(2)记,求数列的前20项和.例29.(2022·河北衡水·高三阶段练习)已知数列的前n项和为,且满足,数列满足,,.(1)求数列,的通项公式;(2)设,且数列的前n项和为,若,恒成立,求常数k的最小值.例30.(2022·全国·高三专题练习)已知等比数列公比为正数,其前项和为,且.数列满足:.(1)求数列的通项公式:(2)求证:.例31.(2022·广东佛山·二模)已知数列{}的前n项和为,且满足(1)求、的值及数列{}的通项公式:(2)设,求数列{}的前n项和例32.(2022·全国·高三专题练习)已知正项数列的前n项和为,且满足,,,数列满足.(1)求出,的通项公式;(2)设数列的前n项和为,求证:.例33.(2022·天津南开·三模)已知数列是公比的等比数列,前三项和为13,且,,恰好分别是等差数列的第一项,第三项,第五项.(1)求和的通项公式;(2)已知,数列满足,求数列的前2n项和;(3)设,求数列的前n项和.【方法技巧与总结】裂裂项相消法求和(1)基本步骤(2)裂项原则一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(3)消项规律消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.题型六:倒序相加法例34.(2022·河北·高三阶段练习)德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数,设数列满足,若,则的前n项和_________.例35.(2022·黑龙江齐齐哈尔·三模(文))已知数列的前n项和为,且,设函数,则______.例36.(2022·全国·高三专题练习(文))已知数列,满足,,.(1)证明为等比数列,并求的通项公式;(2)求.例37.(2022·全国·高三专题练习)已知函数,数列的前n项和为,点均在函数的图象上,函数.(1)求数列的通项公式;(2)求的值;(3)令,求数列的前2020项和.例38.(2022·全国·高三专题练习)已知函数,,正项等比数列满足,则值是多少?.例39.(2022·全国·高三专题练习)已知函数对任意的,都有,数列满足….求数列的通项公式.例40.(2022·全国·高三专题练习)已知函数,数列的前项和为,点均在函数的图象上.(1)求数列的通项公式;(2)若函数,令,求数列的前2020项和.【方法技巧与总结】将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前项和公式的推导即用此方法).题型七:并项求和例41.(2022·全国·高三专题练习)已知的通项公式为,求的前n项和.例42.(2022·福建·厦门一中模拟预测)已知数列的前项和,,,.(1)计算的值,求的通项公式;(2)设,求数列的前项和.例43.(2022·河北·沧县中学模拟预测)已知数列为等差数列,为其前n项和,若.(1)求数列的通项公式;(2)若,求数列的前18项和.例44.(2022·全国·高三专题练习)已知数列的前项和为,且满足.(1)求的通项公式;(2)在和中插入个相同的数,构成一个新数列,,,,,,,,,,,求的前项和.例45.(2022·河南·汝州市第一高级中学模拟预测(理))在数列中,,且.(1)证明:为等比数列,并求的通项公式;(2)令,求数列的前项和.例46.(2022·全国·高三专题练习)已知数列满足,.(1)证明:数列为等比数列.(2)求数列的前n项和.【方法技巧与总结】两两并项或者四四并项题型八:先放缩后裂项求和例47.(2022·天津市宝坻区第一中学二模)已知为等差数列,前n项和为是首项为2的等比数列,且公比大于0,.(1)和的通项公式;(2)求数列的前8项和;(3)证明:.例48.(2022·浙江·效实中学模拟预测)设各项均为正数的数列的前项和为,满足.(1)求的值:(2)求数列的通项公式:(3)证明:对一切正整数,有.例49.(2022·广东汕头·一模)已知数列的前n项和为,.(1)证明:数列为等比数列,并求数列的前n项和为;(2)设,证明:.例50.(2022·浙江绍兴·模拟预测)已知等差数列的首项为,且,数列满足.(1)求和;(2)设,记,证明:当时,.例51.(2022·天津·一模)已知数列是等差数列,其前n项和为,,;数列的前n项和为,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)求证:.例52.(2022·全国·高三专题练习)求证:.【方法技巧与总结】先放缩后裂项,放缩的目的是为了“求和”,这也是凑配放缩形式的目标.题型九:分段数列求和例53.(2022·全国·高三专题练习)设数列的前n项和为,且满足.(1)求数列的通项公式;(2)若,求数列的前15项的和.例54.(2022·山东师范大学附中模拟预测)已知是数列的前n项和,且.(1)求数列的通项公式;(2)记,求数列的前项和.例55.(2022·湖南·长郡中学模拟预测)已知数列满足,.(1)记,证明:数列为等比数列,并求出数列的通项公式;(2)求数列的前项和.例56.(2022·辽宁·抚顺市第二中学三模)已知数列中,满足对任意都成立,数列的前n项和为.(1)若是等差数列,求k的值;(2)若,且是等比数列,求k的值,并求.例57.(2022·湖南·高三阶段练习)已知数列中,,,令.(1)求数列的通项公式;(2)若,求数列的前14项和.例58.(2022·全国·模拟预测)已知数列满足,(1)令,求,及的通项公式;(2)求数列的前2n项和.例59.(2022·全国·高三专题练习)已知数列的前n项和为,且(1)求的通项公式;(2)设,求数列的前20项和.例60.(2022·重庆·高三阶段练习)已知数列的前项和,且,正项等比数列满足:,.(1)求数列和的通项公式;(2)若,求数列的前项和.【方法技巧与总结】(1)分奇偶各自新数列求和(2)要注意处理好奇偶数列对应的项:①可构建新数列;②可“跳项”求和【过关测试】一、单选题1.(2022·全国·高三专题练习)数列的前2022项和等于(
)A. B.2022 C. D.20192.(2022·江西·临川一中模拟预测(文))已知数列的通项公式为为数列的前n项和,(
)A.1008 B.1009 C.1010 D.10113.(2022·四川·射洪中学模拟预测(文))已知首项为1的等差数列的前项和为,满足,则(
)A. B. C. D.4.(2022·全国·高三专题练习)己知数列满足,在之间插入n个1,构成数列:,则数列的前100项的和为(
)A.178 B.191 C.206 D.2165.(2022·河南·南阳中学高三阶段练习(文))已知数列满足,,,数列满足,则数列的前2021项的和为(
)A. B.C. D.6.(2022·全国·高三专题练习)已知公比为2的等比数列满足,记为在区间(为正整数)中的项的个数,则数列的前100项的和为(
)A.360 B.480 C.600 D.1007.(2022·全国·高三专题练习)已知数列满足,,用表示不超过的最大整数,则(
)A.1 B.2 C.3 D.48.(2022·全国·哈师大附中模拟预测(文))已知数列满足,则数列的前5项和为(
)A. B. C. D.二、多选题9.(2022·全国·高三专题练习)已知下图的一个数阵,该阵第行所有数的和记作,,,,,数列的前项和记作,则下列说法正确的是(
)A. B.C. D.10.(2022·全国·高三专题练习)已知正项数列的首项为2,前项和为,且,,数列的前项和为,若,则的值可以为(
)A.543 B.542C.546 D.54411.(2022·全国·高三专题练习)我们把()叫作“费马数”(费马是十七世纪法国数学家).设,,表示数列的前项和,则使不等式成立的正整数的值可以是(
)A.7 B.8 C.9 D.1012.(2022·河北·模拟预测)将数列与的公共项从小到大排列得到数列,则下列说法正确的有(
)A.数列为等差数列 B.数列为等比数列C. D.数列的前n项和为三、填空题13.(2022·四川成都·模拟预测(理))杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形.帕斯卡(1623-1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年.这是我国数学史上的又一个伟大成就.其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了.该表中,从上到下,第次出现某行所有数都是奇数的行号记为,比如,则数列的前10项和为___________.第1行
1
1第2行
1
2
1第3行
1
3
3
1第4行
1
4
6
4
1第5行
1
5
10
10
5
1第6行
1
6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届新疆昌吉回族自治州九中物理高三第一学期期中考试试题含解析
- 2025届安徽凤阳县城西中学物理高一上期末联考试题含解析
- 2025届中考物理热身梯形含解析物理高一上期中质量检测模拟试题含解析
- 2025届江苏省徐州市高一物理第一学期期末综合测试模拟试题含解析
- 2025届湖南长沙市第一中学物理高三第一学期期中经典模拟试题含解析
- 2025届湖南省长沙市稻田中学物理高二第一学期期中考试试题含解析
- 2025届内蒙古赤峰第四中学高二物理第一学期期中达标检测模拟试题含解析
- 安徽省全国示范高中名校2025届高二物理第一学期期末检测试题含解析
- 2025届上海市浦东新区四校物理高三上期末质量检测模拟试题含解析
- 2025届江苏省扬州市广陵区扬州中学物理高三上期中统考模拟试题含解析
- 钢筋混凝土梁柱箍筋面积表(打印)
- 培训学校校长绩效考核表
- 1厘米方格纸电子版本
- 防水材料检验作业指导书
- X乡初级中学留守儿童家长学校章程
- 三角形的重心
- 我国绿色化工未来发展战略与思考
- 苏里南商业机会多多
- Himalaya藏文输入法的安装过程及其键盘布局介绍
- 高考数学小题狂练:每题都附有详细解析
- 浮动码头施工方案
评论
0/150
提交评论